[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Hybrid strategy in multiperiod mean-variance framework

  • Short Communication
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

In multiperiod mean-variance framework, the investor suffers time inconsistency. Current solution schemes either reformulate the problem into a sequential by assuming there is no ability of conducting self-control, or reformulate the problem into a planner-doer game by assuming there is enough ability of conducting self-control. However, in reality, the investor often has limited ability of conducting self-control and we reformulate the problem as a planner-middleman-doer game. We derive the explicit expression of the equilibrium strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Basak, S., Chabakauri, G.: Dynamic mean-variance asset allocation. Rev. Financ. Stud. 23, 2970–3016 (2010)

    Article  Google Scholar 

  2. Björk, T., Murgoci, A., Zhou, X.Y.: Mean-variance portfolio optimization with state dependent risk aversion. Math. Finance 24, 1–24 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen, Z.P., Li, G., Zhao, Y.G.: Time-consistent investment policies in Markovian markets: A case of mean-variance analysis. J. Econ. Dynam. & Control 40, 293–316 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, S., Li, Z., Zeng, Y.: Optimal dividend strategies with time-inconsistent preferences. J. Econ. Dyn. & Control 46, 150–172 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cui, X.Y., Li, D., Wang, S.Y., Zhu, S.S.: Better than dynamic mean-variance: Time inconsistency and free cash flow stream. Math. Finance 22, 346–378 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cui, X.Y., Li, X., Li, D., Shi, Y.: Time Consistent Behavioral Portfolio Policy for Dynamic Mean-Variance Formulation. J. Operat. Res. Soc. 68, 1647–1660 (2017)

    Article  Google Scholar 

  7. Cui, X.Y., Li, D., Shi, Y.: Self-coordination in time inconsistent stochastic decision problems: a planner-doer game framework. J. Econ. Dyn. & Control 75, 91–113 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ekeland, I., Pirvu, T.: Investment and Consumption without Commitment. Math. Finance Econ. 2, 57–86 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Elton, E. J., M.J. Gruber, S.J.: Brown, and W.N. Goetzmann, Modern Portfolio Thoery and Investment Analysis, John Wiley & Sons, (2007)

  10. Gao, J.J., Li, D., Cui, X.Y., Wang, S.Y.: Time cardinality constrained mean-variance dynamic portfolio selection and market timing: a stochastic control approach. Automatica 54, 91–99 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hu, Y., Jin, H. Q., Zhou, X. Y.: Time-inconsistent stochastic linear-quadratic control. SIAM J. Control and Optim. 50, 1548–1572 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Li, D., Ng, W.L.: Optimal dynamic portfolio selection: Multiperiod mean-variance formulation, Mathematical. Finance 10, 387–406 (2000)

    MathSciNet  MATH  Google Scholar 

  13. Markowitz, H.: Portfolio Selection. J. Finance 7, 77–98 (1952)

    Google Scholar 

  14. Noda, A.: A test of the adaptive market hypothesis using a time-varying AR model in Japan. Finance Res. Lett. 17, 66–71 (2016)

    Article  Google Scholar 

  15. Strotz, R.: Myopia and inconsistency in dynamic utility maximization. Rev. Econ. Stud. 23, 165–180 (1956)

    Article  Google Scholar 

  16. Wang, J., Forsyth, P.A.: Continuous time mean variance asset allocation: a time-consistent strategy. Eur. J. Operat. Res. 209, 184–201 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Wu, H.L.: Time-consistent strategies for a multiperiod mean-variance portfolio selection problem, J. Appl. Math, 2013, Article ID 841627, 13 pages (2013)

  18. Zhou, X.Y., Li, D.: Continuous-time mean-variance portfolio selection: A stochastic lq framework. Appl. Math. Optimiz. 42, 19–33 (2000)

Download references

Funding

Funding was provided by National Key R&D Program of China (Grant no. 2021YFA1000100 and 2021YFA1000104). National Natural Science Foundation of China, 71671106, 72171138, 71971083, 71931004. Program for Innovative Research Team of Shanghai University of Finance and Economics 2020110930. Open Research Fund of Key Laboratory of Advanced Theory and Application in Statistics and Data Science - MOE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangyu Cui.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, X., Li, D., Shi, Y. et al. Hybrid strategy in multiperiod mean-variance framework. Optim Lett 17, 493–509 (2023). https://doi.org/10.1007/s11590-022-01885-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-022-01885-7

Keywords

Navigation