[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Optimal externalities in a parallel transportation network

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

We consider the Wardrop model with splittable traffic and externalities applied to the parallel transportation network. These externalities are introduced into the players’ latency functions as a tool of the system’s influence on the equilibrium distribution of traffic flows and also on the PoA values. In the general case, the externalities can be interpreted as elements of centralized control, which can be included, e.g., in traffic rules (speed-limit signs, controlled traffic lights), pricing policy for public transport, fuel, etc. This paper investigates the influence of traffic lane rules on the Price of Anarchy. We show that for the parallel transportation system there exist externality values such that the equilibrium and optimal profiles will coincide with one another and the Price of Anarchy will be equal to 1. Also we propose the socialization procedure of user behavior for which the parallel transportation system ensures an optimal profile of user behavior and the same value of the social costs as in the optimal profile with initial externalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Acemoglu, D., Ozdaglar, A.: Flow control, routing, and performance from service provider viewpoint. LIDS report, 74 (2004)

  2. Azariadis, C., Chen, B.-L., Lu, C.-H., Wang, Y.-C.: A two-sector model of endogenous growth with leisure externalities. J. Econ. Theory 148, 843–857 (2013)

    Article  MathSciNet  Google Scholar 

  3. Braess, D.: Uber ein Paradoxon der Verkehrsplanung. Unternehmensforschung 12, 258–268 (1968)

    MathSciNet  MATH  Google Scholar 

  4. Bramoullè, Y., Kranton, R.: Public goods in networks. J. Econ. Theory 135, 478–494 (2007)

    Article  MathSciNet  Google Scholar 

  5. Christodoulou, G., Koutsoupias, E., Nanavati, A.: Coordination mechanisms. Theor. Comput. Sci. 410, 3327–3336 (2009)

    Article  MathSciNet  Google Scholar 

  6. Cole, R. Dodis, Y., Roughgarden, T.: Pricing network edges for heterogeneous selfish users. In: Proceedings of the 4th ACM conference on Electronic commerce. pp. 98–107 (2003)

  7. Cole, R., Dodis, Y., Roughgarden, T.: How much can taxes help selfish routing? J. Comput. Syst. Sci. 72, 444–467 (2006)

    Article  MathSciNet  Google Scholar 

  8. Easley, D., Kleinberg, J.: Networks, Crowds, and markets: reasoning about highly connected world. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  9. Fleischer, L., Jain, K., Mahdian, M.: Tolls for heterogeneous selfish users in multicommodity networks and generalized congestion games. In: Proceedings of the Fourty-Fifth Annual IEEE symposium on foundations of computer science. pp. 277-285 (2004)

  10. Fleischer, L.: Linear tolls suffice: new bounds and algorithms for tolls in single source networks. Theor. Comput. Sci. 348, 217–225 (2005)

    Article  MathSciNet  Google Scholar 

  11. Gao, H., Mazalov, V.V., Xue, J.: Optimal parameters of service in a public transportation market with pricing. J. Adv. Transp. (2020). https://doi.org/10.1155/2020/6326953

    Article  Google Scholar 

  12. Holzman, R., Monderer, D.: Strong equilibrium in network congestion games: increasing versus decreasing costs. Int. J. Game Theory 44, 647–666 (2015)

    Article  MathSciNet  Google Scholar 

  13. Jacobs, J.: The Economy of Cities. Random House, New York (1969)

    Google Scholar 

  14. Jahn, O., Möhring, R.H., Schulz, A.S., Stier-Moses, N.E.: System-optimal routing of traffic flows with user constraints in networks with congestion. Op. Res. 53, 600–616 (2003)

    Article  MathSciNet  Google Scholar 

  15. Karakostas, G., Kolliopoulos, S.G.: Edge pricing of multicommodity networks for heterogeneous selfish users. In: Proceedings of the Fourty-Fifth annual IEEE symposium on foundations of computer science. pp. 268-276 (2004)

  16. Karakostas, G., Kim, T., Viglas, A., Xia, H.: On the degradation of performance for traffic networks with oblivious users. J. Transp. Res. Part B. 45, 364–371 (2011)

    Article  Google Scholar 

  17. Kuang, Z., Lian, Z., Lien, J.W., Zheng, J.: Serial and parallel duopoly competition in multi-segment transportation routes. Transp. Res. Part E: Logist. Transp. Rev. 133, 101821 (2020)

    Article  Google Scholar 

  18. Kuang, Z., Mazalov, V.V., Tang, X., Zheng, J.: Transportation network with externalities. J. Comput. Appl. Math. 382, 113091 (2021)

    Article  MathSciNet  Google Scholar 

  19. Lien, J.W., Mazalov, V.V., Melnik, A.V., Zheng, J.: Wardrop equilibrium for networks with the BPR latency function. Discr. Optim. Op. Res. LNCS 9869, 37–49 (2016)

    MathSciNet  MATH  Google Scholar 

  20. Mak, V., Seale, D.A., Gishces, E.J., Braess: The, paradox and coordination failure in directed networks with mixed externalities. Prod. Op. Manag. 27(4), 717–733 (2018)

  21. Mazalov, V., Chirkova, J.: Networking Games. Network Forming Games and Games on Networks, p. 322. Academic Press, Cambridge (2019)

    MATH  Google Scholar 

  22. Mazalov, V.V., Melnik, A.V.: Equilibrium prices and flows in the passenger traffic problem. Int Game Theory Rev. 18, 1–19 (2016)

    MathSciNet  MATH  Google Scholar 

  23. Milchtaich, I.: Network, topology and the efficiency of equilibrium. Games Econ. Behav. 57(2), 321–346 (2006)

    Article  MathSciNet  Google Scholar 

  24. Papadimitriou, C.H., Koutsoupias, E.: Worst-case equilibria. LNSC 1563, 404–413 (1999)

    MathSciNet  MATH  Google Scholar 

  25. Roughgarden, T.: The price of anarchy is independent of the network topology. J. Comput. Syst. Sci. 67, 341–364 (2003)

    Article  MathSciNet  Google Scholar 

  26. Roughgarden, T., Tardos, E.: How bad is selfish routing?. In: Proceedings of the 41st annual IEEE symposium on foundations of computer science. pp. 93–102 (2000)

  27. Sheffi, Y.: Urban transportation networks: equilibrium analysis with mathematical programming methods. Prentice-Hall, Englewood Cliffs, New Jersey (1985)

  28. U.S. Bureau of Public Roads: Traffic Assignment Manual, U.S. Department of Commerce, Washington, D.C., (1964)

  29. Wardrop, J.G.: Some theoretical aspects of road traffic research. ICE Proc. Eng. Divi. 1, 325–362 (1952)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia V. Chirkova.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by the Russian Science Foundation (grant No. 22-11-20015)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chirkova, J.V., Mazalov, V.V. Optimal externalities in a parallel transportation network. Optim Lett 16, 1971–1989 (2022). https://doi.org/10.1007/s11590-022-01864-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-022-01864-y

Keywords

Navigation