[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Nearly tight approximation algorithm for (connected) Roman dominating set

  • Origina Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

A Roman dominating function of graph G is a function \(r: V(G)\rightarrow \{0, 1, 2\}\) satisfying that every vertex v with \(r(v)=0\) is adjacent to at least one vertex u with \(r(u)=2.\) The minimum Roman dominating set problem (MinRDS) is to compute a Roman dominating function r that minimizes the weight \(\sum _{v\in V}r(v).\) The minimum connected Roman dominating set problem (MinCRDS) is to find a minimum weight Roman dominating function \(r_{c}\) such that the subgraph of G induced by \(D_{R}=\{v \in V \mid r_{c}(v)=1 ~\mathrm{{or}}~ r_{c}(v)=2\}\) is connected. In this paper, we present a greedy algorithm for MinRDS with a guaranteed performance ratio at most \(H(\delta _{\max }+1),\) where \(H(\cdot )\) is the Harmonic number and \(\delta _{\max }\) is the maximum degree of the graph. For any \(\varepsilon >0,\) we show that there exists a greedy algorithm for MinCRDS with approximation ratio at most \((1+\varepsilon )\ln \delta _{\max }+O(1).\) The challenge for the analysis of the MinCRDS algorithm lies in the fact that the potential function is not only non-submodular but also non-monotone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Antoaneta, K., Ivona, P.: Roman domination number on cardinal product of paths and cycles. Kragujev. J. Math. 6(1), 71–78 (2015)

    MathSciNet  MATH  Google Scholar 

  2. Chambers, E.W., Kinnersley, B., Prince, N., West, D.B.: Extremal problems for roman domination. SIAM J. Discrete Math. 23, 1575–1586 (2010)

    Article  MathSciNet  Google Scholar 

  3. Cockayne, E.J., Dreyer, P.A., Hedetniemi, S.M., Hedetniemi, S.T.: Roman domination in graphs. Discrete Math. 278(1–3), 11–22 (2000)

    MathSciNet  MATH  Google Scholar 

  4. Cockayne, E.J., Grobler, P.J.P., Gründlingh, W.R., Munganga, J., van Vuuren, J.H.: Protection of a graph. Util. Math. 67, 19–32 (2005)

    MathSciNet  MATH  Google Scholar 

  5. Dreyer, P.A.: Applications and variations of domination in graphs. Ph.D. thesis, Rutgers University, New Jersey (2000)

  6. Du, D.Z., Ko, K.I., Hu, X.: Design and Analysis of Approximation Algorithms. Springer, Berlin (2012)

    Book  Google Scholar 

  7. Fu, X.L., Yang, Y.S., Jiang, B.Q.: Roman domination in regular graphs. Discrete Math. 309(6), 1528–1537 (2009)

    Article  MathSciNet  Google Scholar 

  8. Lideloff, M., Kloks, T., Liu, J., Peng, S.L.: Roman domination over some graph classes. In: Graph-Theoretic Concepts in Computer Science, Lecture Notes in Computer Science, vol. 3787, pp. 103–114. Springer, Berlin (2005)

  9. Liu, C.H., Chang, G.J.: Roman domination on strongly chordal graphs. J. Comb. Optim. 26(3), 608–619 (2013)

    Article  MathSciNet  Google Scholar 

  10. Naresh Kumar, H., Pradhan, D., Venkatakrishnan, Y.B.: Double vertex-edge domination in graphs: complexity and algorithms. J. Appl. Math. Comput. 66, 245–262 (2021)

    Article  MathSciNet  Google Scholar 

  11. Padamutham, C., Palagiri, V.: Algorithmic aspects of Roman domination in graphs. J. Appl. Math. Comput. 64(1–2), 89–102 (2020)

    Article  MathSciNet  Google Scholar 

  12. Pagourtzis, A., Penna, P., Schlude, K., Steinhofel, K., Taylor, D., Widmayer, P.: Server placements, Roman domination and other dominating set variants. In: Proceedings of Second International Conference on Theoretical Computer Science, pp. 280–291 (2002)

  13. Raczek, J., Cyman, J.: Weakly connected Roman domination in graphs. Discrete Appl. Math. 267, 151–159 (2019)

    Article  MathSciNet  Google Scholar 

  14. Shang, W., Wang, X., Hu, X.: Roman domination and its variants in unit disk graphs. Discrete Math. Algorithms Appl. 2(01), 99–105 (2010)

    Article  MathSciNet  Google Scholar 

  15. Stewart, I.: Defend the Roman empire! Sci. Am. 281(6), 136–138 (1999)

    Article  Google Scholar 

  16. Šumenjak, T.K., Pavlič, P., Tepeh, A.: On the Roman domination in the lexicographic product of graphs. Discrete Appl. Math. 160(13–14), 2030–2036 (2012)

    Article  MathSciNet  Google Scholar 

  17. Wang, L., Shi, Y., Zhang, Z., Zhang, Z.-B., Zhang, X.: Approximation algorithm for a generalized Roman domination problem in unit ball graphs. J. Comb. Optim. 39, 138–148 (2020)

    Article  MathSciNet  Google Scholar 

  18. Wolsey, L.A.: An analysis of the greedy algorithm for the submodular set covering problem. Combinatorica 2(4), 385–393 (1982)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research is supported by NSFC (U20A2068, 11901533, 11771013), and ZJNSFC (LD19A010001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhao Zhang or Ding-Zhu Du.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, K., Ran, Y., Zhang, Z. et al. Nearly tight approximation algorithm for (connected) Roman dominating set. Optim Lett 16, 2261–2276 (2022). https://doi.org/10.1007/s11590-022-01862-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-022-01862-0

Keywords

Navigation