Abstract
This paper studies the problem of siting renewable power generation assets using large amounts of climatological data while accounting for their spatiotemporal complementarity. The problem is cast as a combinatorial optimisation problem selecting a pre-specified number of sites so as to minimise the number of simultaneous low electricity production events that they experience relative to a pre-specified reference production level. It is shown that the resulting model is closely related to submodular optimisation and can be interpreted as generalising the well-known maximum coverage problem. Both deterministic and randomised algorithms are discussed, including greedy, local search and relaxation-based heuristics as well as combinations of these algorithms. The usefulness of the model and methods is illustrated by a realistic case study inspired by the problem of siting onshore wind power plants in Europe, resulting in instances featuring over ten thousand candidate locations and ten years of hourly-sampled meteorological data. The proposed solution methods are benchmarked against a state-of-the-art mixed-integer programming solver and several algorithms are found to consistently produce better solutions at a fraction of the computational cost. The physical nature of solutions provided by the model is also investigated, and all deployment patterns are found to be unable to supply a constant share of the electricity demand at all times. Finally, a cross-validation analysis shows that, except for an edge case, the model can successfully and reliably identify deployment patterns that perform well on previously unseen climatological data from historical data spanning a small number of weather years.
Similar content being viewed by others
References
Achterberg, T.: SCIP: solving constraint integer programs. Math. Program. Comput. 1(1), 1–41 (2009). https://doi.org/10.1007/s12532-008-0001-1
Ageev, A.A., Sviridenko, M.I.: Pipage rounding: a new method of constructing algorithms with proven performance guarantee. J. Comb. Optim. 6, 307–308 (2004). https://doi.org/10.1023/B:JOCO.0000038913.96607.c2
Apt, J.: The Spectrum of Power from Wind Turbines. J. Power Sources 169(2), 369–374 (2007). https://doi.org/10.1016/j.jpowsour.2007.02.077
Badanidiyuru, A., Vondrák, J.: Fast algorithms for maximizing submodular functions. In: Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA’14, pp. 1497–1514. SIAM (2014). https://doi.org/10.5555/2634074.2634184
Badger, J., Bauwens, I., Casso, P., Davis, N., Hahmann, A., Bo Krohn Hansen, S., Ohrbeck Hansen, B., Heathfield, D., Knight, J.O., Lacave, O., Lizcano, G., Bosch i Mas, A., Gylling Mortensen, N., Olsen, B.T., Onninen, M., Potter van Loon, A., Volker, P.: Global Wind Atlas 3.0 (2021). https://globalwindatlas.info/
Baringo, L., Conejo, A.J.: Strategic wind power investment. IEEE Trans. Power Syst. 29(3), 1250–1260 (2014). https://doi.org/10.1109/TPWRS.2013.2292859
Barman, S., Fawzi, O., Ghoshal, S., Gurpinar, E.: Tight approximation bounds for maximum multi-coverage. Math. Program. (2021). https://doi.org/10.1007/s10107-021-01677-4
Berger, M., D.Radu, Fonteneau, R., Henry, R., Glavic, M., Fettweis, X., Du, M.L., Panciatici, P., Balea, L., Ernst, D.: Critical Time Windows for Renewable Resource Complementarity Assessment. Energy 198 (2020). https://doi.org/10.1016/j.energy.2020.117308
Berger, M., Radu, D.: Algorithms for Max k-Multicover (2021). https://gitlab.uliege.be/smart_grids/public/maxk_multicover
Bertsimas, D., Tsitsiklis, J.: Simulated annealing. Stat. Sci. 8(1), 10–15 (1993). https://doi.org/10.1214/ss/1177011077
Bezanson, J., Edelman, A., Karpinski, S., Shah, V.B.: Julia: a fresh approach to numerical computing. SIAM Rev. 59(1), 65–98 (2017). https://doi.org/10.1137/141000671
Calinescu, G., Chekuri, C., Pál, M., Vondrák, J.: Maximizing a monotone submodular function subject to a matroid constraint. SIAM J. Comput. 40(6), 1740–1766 (2011). https://doi.org/10.1137/080733991
Chekuri, C., Kumar, A.: Maximum coverage problem with group budget constraints and applications. In: Jansen, K., Khanna, S., Rolim, J.D.P., Ron, D. (eds.) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, pp. 72–83. Springer Berlin Heidelberg, Berlin, Heidelberg (2004). https://doi.org/10.1007/s10878-016-0102-0
Chekuri, C., Vondrák, J., Zenklusen, R.: Submodular function maximization via the multilinear relaxation and contention resolution schemes. SIAM J. Comput. 43(6), 1831–1879 (2014). https://doi.org/10.1137/110839655
Chlamtác, E., Dinitz, M., Konrad, C., Kortsarz, G., Rabanca, G.: The densest k-subhypergraph problem. SIAM J. Discrete Math. 32(2), 1458–1477 (2018). https://doi.org/10.1137/16M1096402
Chvatal, V.: A greedy heuristic for the set-covering problem. Math. Oper. Res. 4(3), 233–235 (1979). https://doi.org/10.1287/moor.4.3.233
Cornuejols, G., Fisher, M.L., Nemhauser, G.L.: Location of bank accounts to optimize float: an analytic study of exact and approximate algorithms. Manag. Sci. 23(8), 789–810 (1977). https://doi.org/10.1287/mnsc.23.8.789
CPLEX, I.: IBM CPLEX Optimizer Reference Manual (2021). https://www.ibm.com/docs/en/icos/20.1.0?topic=cplex-users-manual
Dobson, G.: Worst-case analysis of greedy heuristics for integer programming with nonnegative data. Math. Oper. Res. 7(4), 515–531 (1982). https://doi.org/10.1287/moor.7.4.515
Dunning, I., Huchette, J., Lubin, M.: JuMP: a modeling language for mathematical optimization. SIAM Rev. 59(2), 295–320 (2017). https://doi.org/10.1137/15M1020575
Dvorkin, Y., Fernandez-Blanco, R., Wang, Y., Xu, B., Kirschen, D.S., Pandzic, H., Watson, J.P., Silva-Monroy, C.A.: Co-planning of investments in transmission and merchant energy storage. IEEE Trans. Power Syst. 33(1), 245–256 (2018). https://doi.org/10.1109/TPWRS.2017.2705187
Engeland, K., Borga, M., Creutin, J.D., François, B., Ramos, M.H., Vidal, J.P.: Space-time variability of climate variables and intermittent renewable electricity production—a review. Renew. Sustain. Energy Rev. 79, 600–617 (2017). https://doi.org/10.1016/j.rser.2017.05.046
ENTSO-E: Power Statistics (2021). https://www.entsoe.eu/data/power-stats
European Centre for Medium-Range Weather Forecasts (ECMWF): ERA5 Hourly Data on Single Levels from 1979 to Present (2021). https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
Feige, U.: A threshold of ln n for approximating set cover. J. ACM 45(4), 634–652 (1998). https://doi.org/10.1145/285055.285059
Filmus, Y., Ward, J.: The power of local search: maximum coverage over a matroid. In: Christoph Dürr, T.W. (ed.) STACS’12 (29th Symposium on Theoretical Aspects of Computer Science), vol. 14, pp. 601–612. LIPIcs (2012). https://doi.org/10.4230/LIPIcs.STACS.2012.i
Filmus, Y., Ward, J.: Monotone submodular maximization over a matroid via non-oblivious local search. SIAM J. Comput. 43(2), 514–542 (2014). https://doi.org/10.1137/130920277
Gallo, G., Longo, G., Pallottino, S., Nguyen, S.: Directed hypergraphs and applications. Discrete Appl. Math. 42(2–3), 177–201 (1993). https://doi.org/10.1016/0166-218X(93)90045-P
Gamrath, G., Anderson, D., Bestuzheva, K., Chen, W.K., Eifler, L., Gasse, M., Gemander, P., Gleixner, A., Gottwald, L., Halbig, K., Hendel, G., Hojny, C., Koch, T., Le Bodic, P., Maher, S.J., Matter, F., Miltenberger, M., Mühmer, E., Müller, B., Pfetsch, M.E., Schlösser, F., Serrano, F., Shinano, Y., Tawfik, C., Vigerske, S., Wegscheider, F., Weninger, D., Witzig, J.: The SCIP Optimization Suite 7.0. ZIB-Report 20-10, Zuse Institute Berlin (2020)
Gamrath, G., Gleixner, A., Koch, T., Miltenberger, M., Kniasew, D., Schloegel, D., Martin, A., Weninger, D.: Tackling industrial-scale supply chain problems by mixed-integer programming. J. Comput. Math. 37(6), 866–888 (2019). https://doi.org/10.4208/jcm.1905-m2019-0055
Gelaro, R., McCarty, W., Suárez, M.J., Todling, R., Molod, A., Takacs, L., Randles, C.A., Darmenov, A., Bosilovich, M.G., Reichle, R., et al.: The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). J. Clim. 30(14), 5419–5454 (2017). https://doi.org/10.1175/JCLI-D-16-0758.1
Geth, F., Brijs, T., Kathan, J., Driesen, J., Belmans, R.: An overview of large-scale stationary electricity storage plants in Europe: current status and new developments. Renew. Sustain. Energy Rev. 52, 1212–1227 (2015). https://doi.org/10.1016/j.rser.2015.07.145
Giebel, G.: On the Benefits of Distributed Generation of Wind Energy in Europe. PhD Thesis, University of Oldenburg, Germany (2001)
Grossman, T., Wool, A.: Computational experience with approximation algorithms for the set covering problem. Eur. J. Oper. Res. 101(1), 81–92 (1997). https://doi.org/10.1016/S0377-2217(96)00161-0
Gurobi: Gurobi Optimizer Reference Manual (2021). http://www.gurobi.com
Haas, S., Schachler, B., Krien, U.: Windpowerlib—a python library to model wind power plants (v0.2.0) (2019). https://windpowerlib.readthedocs.io/en/stable/index.html
Hobbs, B.F., Xu, Q., Ho, J., Donohoo, P., Kasina, S., Ouyang, J., Park, S.W., Eto, J., Satyal, V.: Adaptive transmission planning: implementing a new paradigm for managing economic risks in grid expansion. IEEE Power Energy Mag. 14(4), 30–40 (2016). https://doi.org/10.1109/MPE.2016.2547280
Hochbaum, D.S., Pathria, A.: Analysis of the greedy approach in problems of maximum k-coverage. Nav. Res. Logist. 45(6), 615–627 (1998). https://doi.org/10.1002/(SICI)1520-6750(199809)45:6$<$615::AID-NAV5$>$3.0.CO;2-5
International Electrotechnical Commission: IEC 61400-1:2019: wind energy generation systems - part 1: design requirements (2019). https://webstore.iec.ch/publication/26423
Johnson, D.S.: Approximation algorithms for combinatorial problems. J. Comput. Syst. Sci. 9(3), 256–278 (1974). https://doi.org/10.1016/S0022-0000(74)80044-9
Jurasz, J., Canales, F., Kies, A., Guezgouz, M., Beluco, A.: A review on the complementarity of renewable energy sources: concept, metrics, application and future research directions. Sol. Energy 195, 703–724 (2020). https://doi.org/10.1016/j.solener.2019.11.087
Khot, S.: On the power of unique 2-prover 1-round games. In: Proceedings of the Thiry-Fourth Annual ACM Symposium on Theory of Computing, STOC’02, pp. 767–775. Association for Computing Machinery, New York, NY, USA (2002). https://doi.org/10.1145/509907.510017
Klima, K., Apt, J.: Geographic smoothing of solar PV: results from Gujarat. Environ. Res. Lett. 10(10), 104001 (2015). https://doi.org/10.1088/1748-9326/10/10/104001
Krause, A., Singh, A., Guestrin, C.: Near-optimal sensor placements in gaussian processes: theory, efficient algorithms and empirical studies. J. Mach. Learn. Res. 9, 235–284 (2008). https://jmlr.org/papers/v9/krause08a.html
Krishnan, V., Ho, J., Hobbs, B.F., Liu, A.L., McCalley, J.D., Shahidehpour, M., Zheng, Q.P.: Co-optimization of electricity transmission and generation resources for planning and policy analysis: review of concepts and modeling approaches. Energy Syst. 7(2), 297–332 (2016). https://doi.org/10.1007/s12667-015-0158-4
Li, W., Stadler, S., Ramakumar, R.: Modeling and assessment of wind and insolation resources with a focus on their complementary nature: a case study of Oklahoma. Ann. Assoc. Am. Geogr. 101(4), 717–729 (2011). https://doi.org/10.1080/00045608.2011.567926
Martin, C.M.S., Lundquist, J.K., Handschy, M.A.: Variability of interconnected wind plants: correlation length and its dependence on variability time scale. Environ. Res. Lett. 10(4), 044004 (2015). https://doi.org/10.1088/1748-9326/10/4/044004
Milligan, M.R., Artig, R.: Choosing Wind Power Plant Locations and Sizes Based on Electric Reliability Measures Using Multiple-Year Wind Speed Measurements. Tech. Rep. CP-500-26724, NREL (1999). https://www.osti.gov/biblio/750939
Mirzasoleiman, B., Badanidiyuru, A., Karbasi, A., Vondrák, J., Krause, A.: Lazier than Lazy Greedy. In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, AAAI’15, pp. 1812–1818. AAAI Press (2015). https://doi.org/10.5555/2886521.2886572
Munoz, F.D., Hobbs, B.F., Ho, J.L., Kasina, S.: An engineering-economic approach to transmission planning under market and regulatory uncertainties: WECC case study. IEEE Trans. Power Syst. 29(1), 307–317 (2014). https://doi.org/10.1109/TPWRS.2013.2279654
Musselman, A., Thomas, V.M., Boland, N., Nazzal, D.: Optimizing wind farm siting to reduce power system impacts of wind variability. Wind Energy 22(7), 894–907 (2019). https://doi.org/10.1002/we.2328
Nemhauser, G.L., Wolsey, L.A.: Best algorithms for approximating the maximum of a submodular set function. Math. Oper. Res. 3(3), 177–188 (1978). https://doi.org/10.1287/moor.3.3.177
Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for maximizing submodular set functions-I. Math. Program. 14, 265–294 (1978). https://doi.org/10.1007/BF01588971
Norgård, P., Holttinen, H.: A multi-turbine power curve. In: NWPC’04: Nordic Wind Power Conference, no. 32R in Chalmers Tekniska Högskola, Institutionen för Elkraftteknik. Examensarbete (2004)
O’Connell, N., Pinson, P., Madsen, H., O’Malley, M.: Benefits and challenges of electrical demand response: a critical review. Renew. Sustain. Energy Rev. 39, 686–699 (2014). https://doi.org/10.1016/j.rser.2014.07.098
Olauson, J., Bergkvist, M.: Correlation between wind power generation in the European countries. Energy 114, 663–670 (2016). https://doi.org/10.1016/j.energy.2016.08.036
Peleg, D., Schechtman, G., Wool, A.: Approximating bounded 0-1 integer linear programs. In: The 2nd Israel Symposium on Theory and Computing Systems, pp. 69–70. IEEE (1993). https://doi.org/10.1109/ISTCS.1993.253482
Peleg, D., Schechtman, G., Wool, A.: Randomized approximation of bounded multicovering problems. Algorithmica 18(1), 44–66 (1997). https://doi.org/10.1007/BF02523687
Prasad, A.A., Taylor, R.A., Kay, M.: Assessment of solar and wind resource synergy in Australia. Appl. Energy 190, 354–367 (2017). https://doi.org/10.1016/j.apenergy.2016.12.135
Radu, D., Berger, M.: Data for “Siting Renewable Power Generation Assets using Combinatorial Optimisation” (2021). https://dox.uliege.be/index.php/s/jNoMUGUHi1QhsAf
Radu, D., Berger, M.: resite_ip: A Framework for RES Siting Leveraging Resource Complementarity (2021). https://gitlab.uliege.be/smart_grids/public/resite_ip/tree/feature-ol
Radu, D., Berger, M., Fonteneau, R., Hardy, S., Fettweis, X., Du, M.L., Panciatici, P., Balea, L., Ernst, D.: Complementarity assessment of South Greenland katabatic flows and West Europe wind regimes. Energy 175, 393–401 (2019). https://doi.org/10.1016/j.energy.2019.03.048
Resende, M.G.: Computing approximate solutions of the maximum covering problem with GRASP. J. Heurist. 4(2), 161–177 (1998). https://doi.org/10.1023/A:1009677613792
Roughgarden, T. (ed.): Beyond the Worst-Case Analysis of Algorithms. Cambridge University Press, Cambridge (2021). https://doi.org/10.1017/9781108637435
Stenclik, D., Denholm, P., Chalamala, B.: Maintaining balance: the increasing role of energy storage for renewable integration. IEEE Power Energy Mag. 15(6), 31–39 (2017). https://doi.org/10.1109/MPE.2017.2729098
Sterl, S., Liersch, S., Koch, H., van Lipzig, N.P.M., Thiery, W.: A new approach for assessing synergies of solar and wind power: implications for West Africa. Environ. Res. Lett. 13(9) (2018). https://doi.org/10.1088/1748-9326/aad8f6
WindEurope: Wind Energy and On-Site Energy Storage - Exploring Market Opportunities (2017). https://windeurope.org/wp-content/uploads/files/about-wind/reports/Wind-energy-in-Europe-Scenarios-for-2030.pdf
WindEurope: Wind Energy in Europe in 2019 (2020). https://windeurope.org/wp-content/uploads/files/about-wind/statistics/WindEurope-Annual-Statistics-2019.pdf
Wu, G., Deshmukh, R., Ndhlukulac, K., Radojicic, T., Reilly-Moman, J., Phadke, A., Kammen, D., Callaway, D.: Strategic siting and regional grid interconnections key to low-carbon futures in African countries. Proc. Natl. Acad. Sci. 114, 3004–3012 (2017). https://doi.org/10.1073/pnas.1611845114
Zappa, W., van den Broek, M.: Analysing the potential of integrating wind and solar power in europe using spatial optimisation under various scenarios. Renew. Sustain. Energy Rev. 94, 1192–1216 (2018). https://doi.org/10.1016/j.rser.2018.05.071
Zhang, H., Cao, Y., Zhang, Y., Terzija, V.: Quantitative synergy assessment of regional wind-solar energy resources based on MERRA reanalysis data. Appl. Energy 216, 172–182 (2018). https://doi.org/10.1016/j.apenergy.2018.02.094
Acknowledgements
Mathias Berger and David Radu would like to gratefully acknowledge the support of the Belgian government through its Energy Transition Fund and the REMI project. Antoine Dubois would like to acknowledge the support of a FRIA fellowship of the FRS-FNRS. The authors would like to thank Raphael Fonteneau for valuable discussions and the anonymous reviewers whose comments helped improve the clarity and quality of this manuscript.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Berger, M., Radu, D., Dubois, A. et al. Siting renewable power generation assets with combinatorial optimisation. Optim Lett 16, 877–907 (2022). https://doi.org/10.1007/s11590-021-01795-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11590-021-01795-0