[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

On gradient projection methods for strongly pseudomonotone variational inequalities without Lipschitz continuity

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

In this paper, we propose two new self-adaptive algorithms for solving strongly pseudomonotone variational inequalities. Our algorithms use dynamic step-sizes, chosen based on information of the previous step and their strong convergence is proved without the Lipschitz continuity of the underlying mappings. In contrast to the existing self-adaptive algorithms in Bello Cruz et al. (Comput Optim Appl 46:247–263, 2010), Santos et al. (Comput Appl Math 30:91–107, 2011), which use fast diminishing step-sizes, the new algorithms use arbitrarily slowly diminishing step sizes. This feature helps to speed up our algorithms. Moreover, we provide the worst case complexity bound of the proposed algorithms, which have not been done in the previous works. Some preliminary numerical experiences and comparisons are also reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anh, P.K., Hai, T.N.: Splitting extragradient-like algorithms for strongly pseudomonotone equilibrium problems. Numer. Algorithms 76, 67–91 (2017)

    Article  MathSciNet  Google Scholar 

  2. Anh, P.N., Hai, T.N., Tuan, P.M.: On ergodic algorithms for equilibrium problems. J. Global Optim. 64, 179–195 (2016)

    Article  MathSciNet  Google Scholar 

  3. Anh, P.K., Vinh, N.T.: Self-adaptive gradient projection algorithms for variational inequalities involving non-Lipschitz continuous operators. Numer. Algorithms. https://doi.org/10.1007/s11075-018-0578-z

  4. Bao, T.Q., Khanh, P.Q.: A projection-type algorithm for pseudomonotone nonlipschitzian multi-valued variational inequalities. Nonconvex Optim. Appl. 77, 113–129 (2005)

    Article  Google Scholar 

  5. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, New York (2011)

    Book  Google Scholar 

  6. Bello Cruz, J.Y., Iusem, A.N.: Convergence of direct methods for paramonotone variational inequalities. Comput. Optim. Appl. 46, 247–263 (2010)

    Article  MathSciNet  Google Scholar 

  7. Bello Cruz, J.Y., Iusem, A.N.: A strongly convergent direct method for monotone variational inequalities in Hilbert spaces. Numer. Funct. Anal. Optim. 30, 23–36 (2009)

    Article  MathSciNet  Google Scholar 

  8. Bello Cruz, J.Y., Iusem, A.N.: An explicit algorithm for monotone variational inequalities. Optimization 61, 855–871 (2012)

    Article  MathSciNet  Google Scholar 

  9. Censor, Y., Gibali, A., Reich, S.: The subgradient extragradient method for solving variational inequalities in Hilbert space. J. Optim. Theory Appl. 148, 318–335 (2011)

    Article  MathSciNet  Google Scholar 

  10. Facchinei, F., Pang, J.-S.: Finite-dimensional variational inequalities and complementarity problems. Springer, New York (2003)

    MATH  Google Scholar 

  11. Hai, T.N., Vinh, N.T.: Two new splitting algorithms for equilibrium problems. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 111, 1051–1069 (2017)

    Article  MathSciNet  Google Scholar 

  12. Iiduka, H.: A new iterative algorithm for the variational inequality problem over the fixed point set of a firmly nonexpansive mapping. Optimization 59, 873–885 (2010)

    Article  MathSciNet  Google Scholar 

  13. Iiduka, H.: Fixed point optimization algorithm and its application to power control in CDMA data networks. Math. Program. 133, 227–242 (2012)

    Article  MathSciNet  Google Scholar 

  14. Iiduka, H., Yamada, I.: An ergodic algorithm for the power-control games for CDMA data networks. J. Math. Model. Algorithms 8, 1–18 (2009)

    Article  MathSciNet  Google Scholar 

  15. Khanh, P.D., Nhut, M.B.: Error bounds for strongly monotone and Lipschitz continuous variational inequalities. Optim. Lett. 12, 971–984 (2018)

    Article  MathSciNet  Google Scholar 

  16. Khanh, P.D., Vuong, P.T.: Modified projection method for strongly pseudomonotone variational inequalities. J. Global Optim. 58, 341–350 (2014)

    Article  MathSciNet  Google Scholar 

  17. Kim, D.S., Vuong, P.T., Khanh, P.D.: Qualitative properties of strongly pseudomonotone variational inequalities. Optim. Lett. 10, 1669–1679 (2016)

    Article  MathSciNet  Google Scholar 

  18. Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications. Academic Press, New York (1980)

    MATH  Google Scholar 

  19. Korpelevich, G.M.: The extragradient method for finding saddle points and other problems. Ekon. Mat. Metody. 12, 747–756 (1976)

    MathSciNet  MATH  Google Scholar 

  20. Malitsky, Y.: Projected reflected gradient methods for monotone variational inequalities. SIAM J. Optim. 25, 502–520 (2015)

    Article  MathSciNet  Google Scholar 

  21. Santos, P., Scheimberg, S.: An inexact subgradient algorithm for equilibrium problems. Comput. Appl. Math. 30, 91–107 (2011)

    MathSciNet  MATH  Google Scholar 

  22. Solodov, M.V.: Merit functions and error bounds for generalized variational inequalities. J. Math. Anal. Appl. 287, 405–414 (2003)

    Article  MathSciNet  Google Scholar 

  23. Solodov, M.V., Svaiter, B.F.: A new projection method for monotone variational inequality problems. SIAM J. Control Optim. 37, 765–776 (1999)

    Article  MathSciNet  Google Scholar 

  24. Thuy, L.Q., Hai, T.N.: A projected subgradient algorithm for bilevel equilibrium problems and applications. J. Optim. Theory Appl. 175, 411–431 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research is funded by the Hanoi University of Science and Technology (HUST) under project number T2018-PC-121. The author thank two anonymous referees and the editor for their constructive comments which helped to improve the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trinh Ngoc Hai.

Additional information

Dedicated to Professor Pham Ky Anh on the Occasion of his 70th Birthday

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hai, T.N. On gradient projection methods for strongly pseudomonotone variational inequalities without Lipschitz continuity. Optim Lett 14, 1177–1191 (2020). https://doi.org/10.1007/s11590-019-01424-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-019-01424-x

Keywords

Navigation