Abstract
We first lift the problem of maximizing the sum of squares of quadratic forms over the unit sphere to an equivalent nonlinear optimization problem, which provides a new standard quadratic programming relaxation. Then we employ a simplicial branch and bound algorithm to globally solve the lifted problem and show that the time-complexity is linear with respect to the number of all nonzero entries of the input matrices under certain conditions. Numerical results demonstrate the efficiency of the new algorithm.
Similar content being viewed by others
References
Aparicio, G., Casado, L.G., G-Tóth, B., Hendrix, E.M.T. and García, I.: Heuristics to reduce the number of simplices in longest edge bisection refinement of a regular \(n\)-Simplex. In: Computational science and its applications ICCSA. Lecture notes in computer science, vol. 8580, pp 115–125. Springer International Publishing, Cham (2014)
Aparicio, G., Casado, L.G., G-Tóth, B., Hendrix, E.M.T., García, I.: On the minimum number of simplex shapes in longest edge bisection refinement of a regular \(n\)-simplex. Informatica 26(1), 17–32 (2015)
Aparicio, G., Salmerón, J.M., Casado, L.G., Asenjo, R., Hendrix, E.M.T.: Parallel algorithms for computing the smallest binary tree size in unit simplex refinement. J. Parallel Distrib. Comput. 112, 166–178 (2018)
Dickinson, P.J.: On the exhaustivity of simplicial partitioning. J. Global Optim. 58(1), 189–203 (2014)
Goldfarb, D., Liu, S.: An \(O(n^3L)\) primal interior point algorithm for convex quadratic programming. Math. Program. 49(1–3), 325–340 (1990)
Golub, G.H., Van Loan, C.F.: Matrix Computations. Johns Hopkins University Press, Baltimore (1989)
Hao, C.L., Cui, C.F., Dai, Y.H.: A sequential subspace projection method for extreme Z-eigenvalues of supersymmetric tensor. Numer. Linear Algebra Appl. 22(2), 283–298 (2015)
Henrion, D., Lasserre, J.B., Loefberg, J.: GloptiPoly 3: moments, optimization and semidefinite programming. Optim. Methods Softw. 24(4–5), 761–779 (2009)
Horst, R.: A New Branch and Bound Approach for Cconcave Minimization Problems. Lecture Notes in Computer Science, vol. 41, pp. 330–337. Springer, Berlin (1975)
Horst, R.: An algorithm for nonconvex programming problems. Math. Program. 10(1), 312–321 (1976)
Horst, R., Pardalos, P.M., Thoai, N.V.: Introduction to Global Optimization. Springer, Berlin (2000)
Jiang, B., Ma, S.Q., Zhang, S.Z.: Alternating direction method of multipliers for real and complex polynomial optimization models. Optimization 63(6), 883–898 (2014)
Kofidis, E., Regalia, P.A.: On the best rank-1 approximation of higher-order supersymmetric tensors. SIAM J. Matrix Anal. Appl. 23(3), 863–884 (2002)
Kuczynski, J., Wozniakowski, H.: Estimating the largest eigenvalue by the power and Lanczos algorithms with a random start. SIAM J. Matrix Anal. Appl. 13(4), 1094–1122 (1992)
Li, Z.N., He, S.M., Zhang, S.Z.: Approximation methods for polynomial optimization: models, algorithms and applications. Springerbriefs in Optimization. Springer, New York (2012)
Mourrain, B., Pavone, J.P.: Subdivision methods for solving polynomial equations. J. Symbol. Comput. 44(3), 292–306 (2009)
Mourrain, B., Trebuchet, P.: Generalized normal forms and polynomial system solving. In: Proceedings of the 2005 International Symposium on Symbolic and Algebraic Computation, ACM, pp. 253–260 (2005)
Nesterov, Y.: Random walk in a simplex and quadratic optimization over convex polytopes. CORE Discussion Paper 2003/71, CORE-UCL, Louvain-La-Neuve (2003)
Nie, J., Wang, L.: Semidefinite relaxations for the best rank-1 tensor approximation. SIAM J. Matrix Anal. Appl. 35(3), 1155–1179 (2014)
Paulavičius, R., Žilinskas, J.: Simplicial Global Optimization. Springer, New York (2014)
Sahinidis, N.V.: BARON: a general purpose global optimization software package. J. Global Optim. 8(2), 201–205 (1996)
Salmerón, J.M.G., Aparicio, G., Casado, L.G., García, I., Hendrix, E.M.T., G-Tóth, B.: Generating a smallest binary tree by proper selection of the longest edges to bisect in a unit simplex refinement. J. Comb. Optim. 33(2), 389–402 (2017)
So, A.M.C.: Deterministic approximation algorithmsfor sphere constrained homogeneous polynomial optimization problems. Math. Program. 129(2), 357–382 (2011)
Sturm, J.F.: SeDuMi 1.02, a Matlab toolbox for optimization over symmetric cones. Optim. Methods Softw. 11/12, 625–653 (1999)
Wang, L., Xia, Y.: A linear-time algorithm for globally maximizing the sum of a generalized rayleigh quotient and a quadratic form on the unit sphere. SIAM J. Optim. 29(3), 1844–1869 (2019)
Wang, Y.J., Zhou, G.L.: A hybrid second-order method for homogenous polynomial optimization over unit sphere. J. Oper. Res. Soc. China 5(1), 99–109 (2017)
Xia, Y.: On local convexity of quadratic transformations. J. Oper. Res. Soc. China 2, 341–350 (2014)
Zhou, G., Caccetta, L., Teo, K.L., Wu, S.Y.: Nonnegative polynomial optimization over unit spheres and convex programming relaxations. SIAM J. Optim. 22(3), 987–1008 (2012)
Acknowledgements
This research was supported by National Natural Science Foundation of China under Grants 11822103, 11571029, 11771056 and Beijing Natural Science Foundation Z180005.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Cen, X., Xia, Y. Globally maximizing the sum of squares of quadratic forms over the unit sphere. Optim Lett 14, 1907–1919 (2020). https://doi.org/10.1007/s11590-019-01498-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11590-019-01498-7