[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Oil sands extraction plant debottlenecking: an optimization approach

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

Debottlenecking is highly desirable to increase the production throughput for the oil sands industry. In this work, the bottleneck identification and capacity expansion problem is solved through optimization techniques. In the proposed debottlenecking procedure, first-principles method and Gaussian process modeling approach are applied to build process models. Depending on the type of process model used, the optimization problem is solved either as a parametric linear programming problem or as a nonlinear optimization problem. By solving the optimization problem, the bottlenecks can be identified and the necessary capacity expansion for process units for bottleneck removal is reported. The proposed method is demonstrated through applications in oil sands production process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Harsh, M.G., Saderne, P., Biegler, L.T.: A mixed integer flowsheet optimization strategy for process retrofits the debottlenecking problem. Comput. Chem. Eng. 13(8), 947–957 (1989)

    Article  Google Scholar 

  2. Diaz, S., Serrani, A., De Beistegui, R., Brignole, E.A.: A MINLP strategy for the debottlenecking problem in an ethane extraction plant. Comput. Chem. Eng. 19, 175–180 (1995)

    Article  Google Scholar 

  3. Litzen, D.B., Bravo, J.L.: Uncover low-cost debottlenecking opportunities. Chem. Eng. Process 95(3), 25–32 (1999)

    Google Scholar 

  4. Zhang, J., Zhu, X.X., Towler, G.P.: A level-by-level debottlenecking approach in refinery operation. Ind. Eng. Chem. Res. 40(6), 1528–1540 (2001)

    Article  Google Scholar 

  5. Al-Thubaiti, M.M., Al-Azri, N.A., El-Halwagi, M.M.: Integrated techniques for low-cost process debottlenecking. Hydrocarb. Process. 86(9), 161–161 (2007)

    Google Scholar 

  6. Koulouris, A., Calandranis, J., Petrides, D.P.: Throughput analysis and debottlenecking of integrated batch chemical processes. Comput. Chem. Eng. 24(2), 1387–1394 (2000)

    Article  Google Scholar 

  7. Tan, J., Foo, D.C.Y., Kumaresan, S., Aziz, R.A.: Debottlenecking of a batch pharmaceutical cream production. Pharm. Eng. 26(4), 72 (2006)

    Google Scholar 

  8. Tan, R., Lam, H., Kasivisvanathan, H., Ng, D., Foo, D.D.C.Y., Kamal, M., Kleme, J.: An algebraic approach to identifying bottlenecks in linear process models of multifunctional energy systems. Theor. Found. Chem. Eng. 46(6), 642–650 (2012)

    Article  Google Scholar 

  9. Kasivisvanathan, H., Tan, R.R., Ng, D.K., Aziz, M.K.A., Foo, D.C.: Heuristic framework for the debottlenecking of a palm oil-based integrated biorefinery. Chem. Eng. Res. Design 92(11), 2071–2082 (2014)

    Article  Google Scholar 

  10. Key oilsands projects. Canadian Oilsands Navigator. Oilsands Review (2015). Web. 23 Feb 2015. http://navigator.oilsandsreview.com/listing

  11. TOTAL E&P Joslyn Ltd, Joslyn north mine project AI project update section 5: process (2010)

  12. Hugo, A., Pistikopoulos, S.: Long-range process planning under uncertainty via parametric programming. Comput. Aided Chem. Eng. 20, 127–132 (2005)

    Article  Google Scholar 

  13. Li, Z., Ierapetritou, M.G.: Process scheduling under uncertainty using parametric programming. AIChE J. 53(12), 3183–3203 (2007)

    Article  Google Scholar 

  14. Caballero, J.A., Grossmann, I.E.: An algorithm for the use of surrogate models in modular flowsheet optimization. AIChE J. 54(10), 2633–2650 (2008)

    Article  Google Scholar 

  15. Boukouvala, F., Ierapetritou, M.G.: Surrogate-based optimization of expensive flowsheet modeling for continuous pharmaceutical manufacturing. J. Pharm. Innov. 8(2), 131–145 (2013)

    Article  Google Scholar 

  16. Chu, Y., You, F.: Integrated planning, scheduling, and dynamic optimization for batch processes: MINLP model formulation and efficient solution methods via surrogate modeling. Ind. Eng. Chem. Res. 53(34), 13391–13411 (2014)

    Article  Google Scholar 

  17. Li, J., Xiao, X., Boukouvala, F., Floudas, C.A., Zhao, B., Du, G., Liu, H.: Data driven mathematical modeling and global optimization framework for entire petrochemical planning operations. AIChE J. 62(9), 3020–3040 (2016)

    Article  Google Scholar 

  18. Rasmussen, C.E., Williams, C.K.: Gaussian Processes for Machine Learning. MIT press, Cambridge (2006)

    MATH  Google Scholar 

  19. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-box functions. J. Glob. Optim. 13(4), 455–492 (1998)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors greatly appreciate the support from NSERC and Alberta Innovates.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zukui Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, Y., Li, Z. & Huang, B. Oil sands extraction plant debottlenecking: an optimization approach. Optim Lett 14, 945–957 (2020). https://doi.org/10.1007/s11590-018-1349-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-018-1349-4

Keywords

Navigation