[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

The projection and contraction methods for finding common solutions to variational inequality problems

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

In this paper, we firstly introduce two projection and contraction methods for finding common solutions to variational inequality problems involving monotone and Lipschitz continuous operators in Hilbert spaces. Then, by modifying the two methods, we propose two hybrid projection and contraction methods. Both weak and strong convergence are investigated under standard assumptions imposed on the operators. Also, we generalize some methods to show the existence of solutions for a system of generalized equilibrium problems. Finally, some preliminary experiments are presented to illustrate the advantage of the proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alizadeh, M.H., Bianchi, M., Hadjisavvas, N., Pini, R.: On cyclic and \(n\)-cyclic monotonicity of bifunctions. J. Global Optim. 60, 599–616 (2014)

    Article  MathSciNet  Google Scholar 

  2. Ansari, Q.H., Yao, J.C.: A fixed point theorem and its applications to a system of variational inequalities. Bull. Aust. Math. Soc. 59, 433–442 (1999)

    Article  MathSciNet  Google Scholar 

  3. Bauschke, H.H., Combettes, P.L.: A weak-to-strong convergence principle for fejer-monotone methods in Hilbert spaces. Math. Oper. Res. 26, 248–264 (2001)

    Article  MathSciNet  Google Scholar 

  4. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, Berlin (2011)

    Book  Google Scholar 

  5. Blum, E., Oettli, W.: From optimization and variational inequalities to equilibrium problems. Math. Stud. 63, 23–145 (1994)

    MathSciNet  MATH  Google Scholar 

  6. Cai, X., Gu, G., He, B.: On the O(\(1/\)t) convergence rate of the projection and contraction methods for variational inequalities with Lipschitz continuous monotone operators. Comput. Optim. Appl. 57, 339–363 (2014)

    Article  MathSciNet  Google Scholar 

  7. Censor, Y., Gibali, A., Reich, S.: Algorithms for the split variational inequality problem. Numer. Algorithms 59, 301–323 (2012)

    Article  MathSciNet  Google Scholar 

  8. Censor, Y., Gibali, A., Reich, S.: A von Neumann alternating method for finding common solutions to variational inequalities. Nonlinear Anal. 75, 4596–4603 (2012)

    Article  MathSciNet  Google Scholar 

  9. Censor, Y., Gibali, A., Reich, S.: The subgradient extragradient method for solving variational inequalities in Hilbert space. J. Optim. Theory Appl. 148, 318–335 (2011)

    Article  MathSciNet  Google Scholar 

  10. Censor, Y., Gibali, A., Reich, S., Sabach, S.: Common solutions to variational inequalities. Set Valued Var. Anal. 20, 229–247 (2012)

    Article  MathSciNet  Google Scholar 

  11. Cho, Y.J., Qin, X.: Systems of generalized nonlinear variational inequalities and its projection methods. Nonlinear Anal. 69, 4443–4451 (2008)

    Article  MathSciNet  Google Scholar 

  12. Combettes, P.L.: The convex feasibility problem in image recovery. Adv. Imaging Electron Phys. 95, 155–270 (1996)

    Article  Google Scholar 

  13. Combettes, P.L., Hirstoaga, S.A.: Equilibrium programming in Hilbert spaces. J. Nonlinear Convex Anal. 6, 117–136 (2005)

    MathSciNet  MATH  Google Scholar 

  14. Dong, Q.L., Lu, Y.Y., Yang, J.: The extragradient algorithm with inertial effects for solving the variational inequality. Optimization 65(12), 2217–2226 (2016)

    Article  MathSciNet  Google Scholar 

  15. Dong, Q.L., Yang, J., Yuan, H.B.: The projection and contraction algorithm for solving variational inequality problems in Hilbert spaces. J. Nonlinear Convex Anal. (To appear)

  16. Dong, Q.L., Yao, Y.: An iterative method for finding common solutions of system of equilibrium problems and fixed point problems in Hilbert spaces. An. St. Univ. Ovidius Constanta 19(3), 101–116 (2011)

    MathSciNet  MATH  Google Scholar 

  17. Dong, Q.L., Cho, Y.J., Zhong, L.L., Rassias, T.H.M.: Inertial projection and contraction algorithm for variational inequalities. J. Global Optim. (2017). https://doi.org/10.1007/s10898-017-0506-0

    Article  Google Scholar 

  18. Fichera, G.: Problemi elastostatici con vincoli unilaterali: Il problema di Signorini con ambigue condizioni al contorno. Atti. Accad. Naz. Lincei Mem. Cl. Sci. Fis. Mat. Natur. Sez. 8(7), 91–140 (1964)

    MathSciNet  MATH  Google Scholar 

  19. Goebel, K., Reich, S.: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. Marcel Dekker, New York (1984)

    MATH  Google Scholar 

  20. Harker, P.T., Pang, J.S.: A damped-newton method for the linear complementarity problem. Lect. Appl. Math. 26, 265–284 (1990)

    MathSciNet  MATH  Google Scholar 

  21. He, B.S.: A class of projection and contraction methods for monotone variational inequalities. Appl. Math. Optim. 35, 69–76 (1997)

    Article  MathSciNet  Google Scholar 

  22. He, B.S., Fu, X.L., Jiang, Z.K.: Proximal-point algorithm using a linear proximal term. J. Optim. Theory Appl. 141, 299–319 (2009)

    Article  MathSciNet  Google Scholar 

  23. Hieu, D.V.: Parallel hybrid methods for generalized equilibrium problems and asymptotically strictly pseudocontractive mappings. J. Appl. Math. Comput. 53, 531–554 (2017)

    Article  MathSciNet  Google Scholar 

  24. Hieu, D.V., Anh, P.K., Muu, L.D.: Modified hybrid projection methods for finding common solutions to variational inequality problems. Comput. Optim. Appl. 66, 75–96 (2017)

    Article  MathSciNet  Google Scholar 

  25. Hlavacek, I., Haslinger, J., Necas, J., Lovicek, J.: Solution of Variational Inequalities in Mechanics. Springer, New York (1982)

    Google Scholar 

  26. Kassay, G., Reich, S., Sabach, S.: Iterative methods for solving systems of variational inequalities in reflexive Banach spaces. SIAM J. Optim. 21, 1319–1344 (2011)

    Article  MathSciNet  Google Scholar 

  27. Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Applications. Academic Press, New York (1980)

    MATH  Google Scholar 

  28. Korpelevich, G.M.: The extragradient method for finding saddle points and other problems. Ekon. Mat. Metod. 12, 747–756 (1976)

    MathSciNet  MATH  Google Scholar 

  29. Kumam, W., Piri, H., Kumam, P.: Solutions of system of equilibrium and variational inequality problems on fixed points of infinite family of nonexpansive mappings. Appl. Math. Comput. 248, 441–455 (2014)

    MathSciNet  MATH  Google Scholar 

  30. Matinez-Yanes, C., Xu, H.K.: Strong convergence of the CQ method for fixed point processes. Nonlinear Anal. 64, 2400–2411 (2006)

    Article  MathSciNet  Google Scholar 

  31. Panagiotopoulos, P.D.: Inequality Problems in Mechanics and Applications. Birkhäuser, Boston (1985)

    Book  Google Scholar 

  32. Reich, S.: Nonlinear evolution equations and nonlinear ergodic theorems. Nonlinear Anal. 1, 319–330 (1977)

    Article  MathSciNet  Google Scholar 

  33. Reich, S.: Weak convergence theorems for nonexpansive mappings in Banach spaces. J. Math. Anal. Appl. 67, 274–276 (1979)

    Article  MathSciNet  Google Scholar 

  34. Reich, S., Sabach, S.: Three strong convergence theorems regarding iterative methods for solving equilibrium problems in reflexive Banach spaces. Contemp. Math. 568, 225–240 (2012)

    Article  MathSciNet  Google Scholar 

  35. Rockafellar, R.T.: On the maximality of sums of nonlinear monotone operators. Trans. Am. Math. Soc. 149, 75–88 (1970)

    Article  MathSciNet  Google Scholar 

  36. Stampacchia, G.: Formes bilinéaires coercitives sur les ensembles convexes. Comptes Rendus Math. 258, 4413–4416 (1964)

    MATH  Google Scholar 

  37. Sun, D.F.: A class of iterative methods for solving nonlinear projection equations. J. Optim. Theory Appl. 91, 123–140 (1996)

    Article  MathSciNet  Google Scholar 

  38. Vilenkin, N.Y., Gorin, E.A., Kostyuchenko, A.G., Krasnosel’skii, M.A., Krein, S.G., Maslov, V.P., Mityagin, B.S., Petunin, Y., et al.: Functional Analysis. Wolters-Noordhoff, Groningen (1972)

    Google Scholar 

  39. Yang, Q.: On variable-step relaxed projection algorithm for variational inequalities. J. Math. Anal. Appl. 302, 166–179 (2005)

    Article  MathSciNet  Google Scholar 

  40. Yao, Y., Cho, Y.J., Liou, Y.C.: Algorithms of common solutions for variational inclusions, mixed equilibrium problems and fixed point problems. Eur. J. Oper. Res. 212, 242–250 (2011)

    Article  MathSciNet  Google Scholar 

  41. Yao, Y., Liou, Y.C., Kang, S.M.: Two-step projection methods for a system of variational inequality problems in Banach spaces. J. Global Optim. 55, 801–811 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to express their thanks to Dr. Hieu for his help in program. We wish to thank the anonymous referees for the careful readings and suggestions, which led to improvements in the presentation of the results.

Supported by National Natural Science Foundation of China (No. 71602144) and Open Fund of Tianjin Key Lab for Advanced Signal Processing (No. 2016ASP-TJ01)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiao-Li Dong or Yeol Je Cho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, QL., Cho, Y.J. & Rassias, T.M. The projection and contraction methods for finding common solutions to variational inequality problems. Optim Lett 12, 1871–1896 (2018). https://doi.org/10.1007/s11590-017-1210-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-017-1210-1

Keywords

Navigation