Abstract
In the last years, demand and availability of computational capabilities experienced radical changes. Desktops and laptops increased their processing resources, exceeding users’ demand for large part of the day. On the other hand, computational methods are more and more frequently adopted by scientific communities, which often experience difficulties in obtaining access to the required resources. Consequently, data centers for outsourcing use, relying on the cloud computing paradigm, are proliferating. Notwithstanding the effort to build energy-efficient data centers, their energy footprint is still considerable, since cooling a large number of machines situated in the same room or container requires a significant amount of power. The volunteer cloud, exploiting the users’ willingness to share a quote of their underused machine resources, can constitute an effective solution to have the required computational resources when needed. In this paper, we foster the adoption of the volunteer cloud computing as a green (i.e., energy efficient) solution even able to outperform existing data centers in specific tasks. To manage the complexity of such a large scale heterogeneous system, we propose a distributed optimization policy to task scheduling with the aim of reducing the overall energy consumption executing a given workload. To this end, we consider an integer programming problem relying on the Alternating Direction Method of Multipliers (ADMM) for its solution. Our approach is compared with a centralized one and other non-green targeting solutions. Results show that the distributed solution found by the ADMM constitutes a good suboptimal solution, worth to be applied in a real environment.
Similar content being viewed by others
References
The Service Level Agreement. http://www.sla-zone.co.uk (2015)
Amoretti, M., Lafuente, A., Sebastio, S.: A cooperative approach for distributed task execution in autonomic clouds. In: PDP’13 (2013). https://doi.org/10.1109/PDP.2013.47
Anderson, D.P.: BOINC: A system for public-resource computing and storage. In: GRID ’04 (2004). https://doi.org/10.1109/GRID.2004.14
Anderson, D.P., Cobb, J., Korpela, E., Lebofsky, M., Werthimer, D.: SETI@Home: an experiment in public-resource computing. Commun. ACM 45(11), 56–61 (2002). https://doi.org/10.1145/581571.581573
Babaoglu, O., Marzolla, M., Tamburini, M.: Design and Implementation of a P2P Cloud System. In: SAC ’12 (2012). https://doi.org/10.1145/2245276.2245357
Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011)
Brasileiro, F., Araujo, E., Voorsluys, W., Oliveira, M., Figueiredo, F.: Bridging the high performance computing gap: the ourgrid experience. In: CCGrid’07 (2007). https://doi.org/10.1109/CCGRID.2007.28
Cappos, J., Beschastnikh, I., Krishnamurthy, A., Anderson, T.: Seattle: a platform for educational cloud computing. SIGCSE Bull. 41(1), 111–115 (2009). https://doi.org/10.1145/1539024.1508905
Carrabs, F., Cerulli, R., D’Ambrosio, C., Gentili, M., Raiconi, A.: Maximizing lifetime in wireless sensor networks with multiple sensor families. Comput. Oper. Res. 60, 121–137 (2015). https://doi.org/10.1016/j.cor.2015.02.013
Caton, S., Rana, O.: Towards autonomic management for Cloud services based upon volunteered resources. Concurr. Comput. Pract. Exp. 24(9), 992–1014 (2012). https://doi.org/10.1002/cpe.1715
Celestini, A., Lluch Lafuente, A., Mayer, P., Sebastio, S., Tiezzi, F.: Reputation-based cooperation in the clouds. In: IFIPTM’14 (2014). https://doi.org/10.1007/978-3-662-43813-8_15
Costa, F., Silva, L., Dahlin, M.: Volunteer cloud computing: mapreduce over the internet. In: IEEE IPDPSW’11 (2011). https://doi.org/10.1109/IPDPS.2011.345
Cunsolo, V.D., Distefano, S., Puliafito, A., Scarpa, M.: Cloud@Home: bridging the gap between volunteer and cloud computing. In: ICIC’09 (2009). https://doi.org/10.1007/978-3-642-04070-2_48
Di Nitto, E., Dubois, D.J., Mirandola, R.: On exploiting decentralized bio-inspired self-organization algorithms to develop real systems. In: SEAMS ’09 (2009). https://doi.org/10.1109/SEAMS.2009.5069075
Dorigo, M., Gambardella, L.M.: Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans. Evol. Comput. 1(1), 53–66 (1997)
Feizollahi, M.J., Costley, M., Ahmed, S., Grijalva, S.: Large-scale decentralized unit commitment. Int. J. Elect. Power Energy Syst. 73(0), 97–106 (2015). https://doi.org/10.1016/j.ijepes.2015.04.009
Ghadimi, E., Teixeira, A., Shames, I., Johansson, M.: Optimal parameter selection for the alternating direction method of multipliers (ADMM): quadratic problems. IEEE Trans. Autom. Control 60(3), 644–658 (2015). https://doi.org/10.1109/TAC.2014.2354892
Grant, M., Boyd, S.: Graph implementations for nonsmooth convex programs. In: Recent advances in learning and control, pp. 95–110 (2008). http://stanford.edu/~boyd/graph_dcp.html
Grant, M., Boyd, S.: CVX: Matlab software for disciplined convex programming, version 2.1. (2014). http://cvxr.com/cvx
Gurobi Optimization Inc.: Gurobi optimizer reference manual (2015).http://www.gurobi.com
Haridas, H., Kailasam, S., Dharanipragada, J.: Cloudy knapsack problems: an optimization model for distributed cloud-assisted systems. In: P2P’14 (2014). https://doi.org/10.1109/P2P.2014.6934313
Hellerstein, J.L.: Google cluster data. Google research blog (2010). http://googleresearch.blogspot.com/2010/01/google-cluster-data.html
Hill, M.D., Marty, M.R.: Amdahl’s Law in the Multicore Era. Computer 41(7), 33–38 (2008). https://doi.org/10.1109/MC.2008.209
Kavalionak, H., Montresor, A.: P2P and cloud: a marriage of convenience for replica management. In: Self-organizing systems, LNCS (2012). https://doi.org/10.1007/978-3-642-28583-7_6
Kavalionak, H., Carlini, E., Ricci, L., Montresor, A., Coppola, M.: Integrating peer-to-peer and cloud computing for massively multiuser online games. Peer-to-Peer Netw. Appl. (2013). https://doi.org/10.1007/s12083-013-0232-4
Li, B., Song, S., Bezakova, I., Cameron, K.: EDR: an energy-aware runtime load distribution system for data-intensive applications in the cloud. In: CLUSTER’2013 (2013). https://doi.org/10.1109/CLUSTER.2013.6702674
Malawski, M., Figiela, K., Nabrzyski, J.: Cost minimization for computational applications on hybrid cloud infrastructures. Fut. Gen. Comput. Syst. 29(7), 1786–1794 (2013). https://doi.org/10.1016/j.future.2013.01.004
Malawski, M., Figiela, K., Bubak, M., Deelman, E., Nabrzyski, J.: Scheduling multilevel deadline-constrained scientific workflows on clouds based on cost optimization. Sci. Prog. 2015, 680,271:1–680,271:13 (2015). https://doi.org/10.1155/2015/680271
Miksik, O., Vineet, V., Pérez, P., Torr, P.: Distributed non-convex ADMM-based inference in large-scale random fields. In: BMVC’14 (2014)
Milojicic, D.S., Kalogeraki, V., Lukose, R., Nagaraja, K., Pruyne, J., Richard, B., Rollins, S., Xu, Z.: Peer-to-Peer computing. Tech. Rep. HPL-2002-57, HP Laboratories Palo Alto (2002). http://www.hpl.hp.com/techreports/2002/HPL-2002-57R1.pdf
Mishra, A.K., Hellerstein, J.L., Cirne, W., Das, C.R.: Towards characterizing cloud backend workloads: insights from google compute clusters. ACM SIGMETRICS Perform. Eval. Rev. 37(4), 34–41 (2010). https://doi.org/10.1145/1773394.1773400
Montresor, A., Abeni, L.: Cloudy weather for P2P, with a chance of gossip. In: IEEE P2C Computing’11 (2011). https://doi.org/10.1109/P2P.2011.6038743
Nir, M., Matrawy, A., St-Hilaire, M.: An energy optimizing scheduler for mobile cloud computing environments. In: INFOCOM WKSHPS’14 (2014). https://doi.org/10.1109/INFCOMW.2014.6849266
Saino, L., Cocora, C., Pavlou, G.: A toolchain for simplifying network simulation setup. In: SIMUTOOLS (2013)
Satyanarayanan, M., Bahl, P., Caceres, R., Davies, N.: The case for VM-based cloudlets in mobile computing. IEEE Pervasive Comput. 8(4), 14–23 (2009). https://doi.org/10.1109/MPRV.2009.82
Sebastio, S., Scala, A.: A workload-based approach to partition the volunteer cloud. In: CIC’15 (2015). https://doi.org/10.1109/CIC.2015.27
Sebastio, S., Amoretti, M., Lluch Lafuente, A.: A computational field framework for collaborative task execution in volunteer clouds. In: SEAMS’14 (2014). https://doi.org/10.1145/2593929.2593943
Sebastio, S., Amoretti, M., Lluch Lafuente, A.: AVOCLOUDY: a simulator of volunteer clouds. Softw.: Pract. Exp. 46(1), 3–30 (2016). https://doi.org/10.1002/spe.2345
Sebastio, S., Amoretti, M., Lluch Lafuente, A., Scala, A.: A holistic approach for collaborative workload execution in volunteer clouds. ACM TOMACS (2017a)
Sebastio, S., Gnecco, G., Bemporad, A.: Optimal and distributed task scheduling in volunteer clouds. Comput. Oper. Res. (2017b). https://doi.org/10.1016/j.cor.2016.11.004
Sun, X.H., Chen, Y.: Reevaluating Amdahl’s law in the multicore era. J. Parallel Distrib. Comput. 70(2), 183–188 (2010). https://doi.org/10.1016/j.jpdc.2009.05.002
Talia, D.: Cloud computing and software agents: towards cloud intelligent services. In: WOA’11 (2011)
Thain, D., Tannenbaum, T., Livny, M.: Distributed computing in practice: the Condor experience. Concurr.: Pract. Exp. 17(2–4), 323–356 (2005)
Tsai, J.T., Fang, J.C., Chou, J.H.: Optimized task scheduling and resource allocation on cloud computing environment using improved differential evolution algorithm. Comput. Oper. Res. 40(12), 3045–3055 (2013). https://doi.org/10.1016/j.cor.2013.06.012
Wendell, P., Jiang, J.W., Freedman, M.J., Rexford, J.: DONAR: decentralized server selection for cloud services. SIGCOMM Comput. Commun. Rev. 40(4), 231–242 (2010)
Woo, D.H., Lee, H.H.: Extending Amdahl’s law for energy-efficient computing in the many-core era. Computer 41(12), 24–31 (2008). https://doi.org/10.1109/MC.2008.494
Xu, H., Li, B.: Joint request mapping and response routing for geo-distributed cloud services. In: INFOCOM’13 (2013). https://doi.org/10.1109/INFCOM.2013.6566873
Zambonelli, F., Mamei, M.: Spatial computing: an emerging paradigm for autonomic computing and communication. In: WAC’04 (2004). https://doi.org/10.1007/11520184_4
Zhu, C., Li, X., Leung, V.C.M., Hu, X., Yang, L.T.: Job scheduling for cloud computing integrated with wireless sensor network. In: CloudCom’14 (2014). https://doi.org/10.1109/CloudCom.2014.106
Acknowledgements
This research was partially supported by the EU through the HOME/2013/CIPS/AG/4000005013 project CI2C. The contents of the paper do not necessarily reflect the position or the policy of funding parties.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Sebastio, S., Gnecco, G. A green policy to schedule tasks in a distributed cloud. Optim Lett 12, 1535–1551 (2018). https://doi.org/10.1007/s11590-017-1208-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11590-017-1208-8