Abstract
A nonmonotone line search method for optimization in noisy environment is proposed. The method is defined for arbitrary search directions and uses only the noisy function values. Convergence of the proposed method is established under a set of standard assumptions. The computational issues are considered and the presented numerical results affirm that nonmonotone strategies are worth considering. Four different line search rules with three different directions are compared numerically. The influence of nonmonotonicity is discussed.
Similar content being viewed by others
References
Andradottir, S.: A scaled stochastic approximation algorithm. Manag. Sci. 42(4), 475–498 (1996)
Barzilai, J., Borwein, J.M.: Two point step size gradient methods. IMA J. Numer. Anal. 8, 141–148 (1988)
Billups, S.C., Larson, J., Graf, P.: Derivative-free optimization of expensive functions with computational error using weighted regression. SIAM J. Optim. 23(1), 27–53 (2013)
Birgin, E.G., Krejić, N., Martínez, J.M.: Globally convergent inexact quasi-Newton methods for solving nonlinear systems. Numer. Algorithms 32(2–4), 249–260 (2003)
Cheng, W., Li, D.H.: A derivative-free nonmonotone line searh and its application to the spectral residual method. IMA J. Numer. Anal. 29, 814–825 (2009)
Cruz, W.L., Martinez, J.M., Raydan, M.: Spectral residual method without gradient information for solving large-scale nonlinear systems of equations. Math. Comput. 75(255), 1429–1448 (2006)
Dennis, J.E. Jr., Schnabel, R.B.: Numerical Methods for Unconstrained Optimization and Nonlinear Equations. SIAM, Philadelphia (1996)
Diniz-Ehrhardt, M.A., Martínez, J.M., Raydan, M.: A derivative free nonmonotone line-search technique for unconstrained optimization. J. Comput. Appl. Math. 219(2), 383–397 (2008)
Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Progr. Ser. A 91, 201–213 (2002)
Fu, M.C.: Gradient estimation. In: Henderson, S.G., Nelson, B.L. (eds.) Handbook in OR & MS, vol. 13, pp. 575–616. Elsevier, North Holland (2006)
Grippo, L., Lampariello, F., Lucidi, S.: A nonmonotone line search technique for Newton’s method. SIAM J. Numer. Anal. 23, 707–716 (1986)
Kelley, C.T.: Iterative Methods for Optimization. SIAM, Philadelphia (1999)
Krejić, N., Krklec Jerinkić, N.: Nonmonotone line search methods with variable sample size. Numer. Algorithms (2014). doi:10.1007/s11075-014-9869-1
Krejić, N., Luz̆anin, J., Stojkovska, I.: A gradient method for unconstrained optimization in noisy environment. Appl. Numer. Math. 70, 1–21 (2013)
Krejić, N., Rapajić, S.: Gllobaly convergent Jacobian smoothing inexact Newton methods for NCP. Comput. Optim. Appl. 41(2), 243–261 (2008)
Li, D.H., Fukushima, M.: A derivative-free line search and global convergence of Broyden-like method for nonlinear equations. Optim. Methods Softw. 13, 181–201 (2000)
Lucidi, S., Sciandrone, M.: A derivative-free algorithm for bound constrained optimization. Comput. Optim. Appl. 21, 119–142 (2002)
Moré, J.J., Garbow, B.S., Hillstrom, K.E.: Testing unconstrained optimization software. ACM Trans. Math. Softw. 7(1), 17–41 (1981)
Nikolovski, F., Stojkovska, I.: New derivative-free nonmonotone line search methods for unconstrained minimization. In: Proceedings of the Fifth International Scientific Conference—FMNS2013, Mathematics and Informatics, vol. 1, pp. 47–53. South-West University “Neofit Rilski”, Blagoevgrad, Bulgaria (2013)
Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer, New York (2006)
Powell, M.J.D.: The NEWUOA software for unconstrained optimization without derivatives. In: Large Scale Nonlinear Optimization, Nonconvex Optimization and Its Applications, pp. 255–297. Springer, US (2006)
Raydan, M.: The Barzilai and Borwein gradient method for the large scale unconstrained minimization problem. SIAM J. Optim. 7, 26–33 (1997)
Spall, J.C.: Introduction to Stochastic Search and Optimization: Estimation, Simulation, and Control. Wiley, Hoboken (2003)
Xu, Z., Dai, Y.-H.: New stochastic approximation algorithms with adaptive step size. Optim. Lett. 6(8), 1831–1846 (2012)
Yu, Z., Pu, D.: A new nonmonotone line search technique for unconstrained optimization. J. Comput. Appl. Math. 219, 134–144 (2008)
Zhang, B., Zhu, Z., Li, S.: A modified spectral conjugate gradient projection algorithm for total variation image restoration. Appl. Math. Lett. 27, 26–35 (2014)
Zhang, H., Hager, W.W.: A nonmonotone line search technique and its application to unconstrained optimization. SIAM J. Optim. 14(4), 1043–1056 (2004)
Acknowledgments
We are grateful to the anonymous referee whose comments helped us to improve the paper.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Krejić, N., Lužanin, Z., Nikolovski, F. et al. A nonmonotone line search method for noisy minimization. Optim Lett 9, 1371–1391 (2015). https://doi.org/10.1007/s11590-015-0848-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11590-015-0848-9