[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Continuity of cone-convex functions

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

In the paper, we show continuity of cone-convex set-valued maps by using nonconvex scalarization methods for sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adly S., Ernst E., Théra M.: Well-positioned closed convex sets and well-positioned closed convex functions. J. Global Optim. 29, 337–351 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ekeland I., Temam R.: Convex Analysis and Variational Problems. North-Holland, Amsterdam (1976)

    MATH  Google Scholar 

  3. Huy N.Q., Yao J.-C.: Semi-infinite optimization under convex function perturbations: Lipshitz stability. J. Optim. Theory Appl. 148, 237–256 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Jeyakumer V.: Characterizing set containments involving infinite convex constraints and reverse-convex constraints. SIAM J. Optim. 13, 947–959 (2003)

    Article  MathSciNet  Google Scholar 

  5. Rockafellar R.T.: Convex Analysis. Princeton University Press, Princeton (1968)

    Google Scholar 

  6. Doagooei A.R., Mohebi H.: Dual characterizations of the set containments with strict cone-convex inequalities in Banach spaces. J. Global Optim. 43, 577–591 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Göpfert A., Riahi H., Tammer C., Zălinescu C.: Variational Methods in Partially Ordered Spaces. Springer, New York (2003)

    MATH  Google Scholar 

  8. Jahn J.: Vector Optimization-Theory, Applications, and Extensions. Springer, Belrin (2004)

    MATH  Google Scholar 

  9. Jeyakumer V., Lee G.M., Dihn N.: Characterizations of solution sets of convex vector minimization problems. Eur. J. Oper. Res. 174, 1396–1413 (2006)

    Article  Google Scholar 

  10. Kuroiwa D.: Convexity for Set-Valued Maps. Appl. Math. Lett. 9, 97–101 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Luc, D.T.: Theory of vector optimization. In: Lecture Notes in Economics and Mathematical Systems, vol. 319, Springer, Berlin (1989)

  12. Popovici N.: Explicity quasiconvex set-valued optimization. J. Global Optim. 38, 103–118 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hamel A., Löhne A.: Minimal element theorems and Ekeland’s principle with set relations. J. Nonlinear Convex Anal. 7, 19–37 (2006)

    MathSciNet  MATH  Google Scholar 

  14. Hernández E., Rodríguez-Marín L.: Nonconvex scalarization in set-optimization with set-valued maps. J. Math. Anal. Appl. 325, 1–18 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kuwano I., Tanaka T., Yamada S.: Unified scalarization and Ky Fan minimax inequality for set-valued maps. J. Nonlinear Convex Anal. 11, 1–13 (2010)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Issei Kuwano.

Additional information

This work is based on research 21540121 supported by Grant-in-Aid for Scientific Research (C) from Japan Society for the Promotion of Science.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuwano, I., Tanaka, T. Continuity of cone-convex functions. Optim Lett 6, 1847–1853 (2012). https://doi.org/10.1007/s11590-011-0381-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-011-0381-4

Keywords

Navigation