[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Integer programming formulations for the minimum weighted maximal matching problem

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

Given an undirected graph, the problem of finding a maximal matching that has minimum total weight is NP-hard. This problem has been studied extensively from a graph theoretical point of view. Most of the existing literature considers the problem in some restricted classes of graphs and give polynomial time exact or approximation algorithms. On the contrary, we consider the problem on general graphs and approach it from an optimization point of view. In this paper, we develop integer programming formulations for the minimum weighted maximal matching problem and analyze their efficacy on randomly generated graphs. We also compare solutions found by a greedy approximation algorithm, which is based on the literature, against optimal solutions. Our results show that our integer programming formulations are able to solve medium size instances to optimality and suggest further research for improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berger A., Fukunaga T., Nagamochi H., Parekh O.: Approximability of the capacitated b-edge dominating set problem. Theor. Comput. Sci. 385, 202–213 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bomze I.M., Budinich M., Pardalos P.M., Pelillo M.: The maximum clique problem. In: Du, D.-Z., Pardalos, P.M. (eds) Handbook of Combinatorial Optimization, Kluwer, Dordrecht (1999)

    Google Scholar 

  3. Cardinal, J., Labbé, M., Langerman, S., Levy, E., Mélot, H.: A tight analysis of the maximal matching heuristic. In: COCOON, Lecture Notes in Computer Science, vol. 3595, pp. 701–709 (2005)

  4. Cardinal J., Langerman S., Levy E.: Improved approximation bounds for edge dominating set in dense graphs. Theor. Comput. Sci. 410, 949–957 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chlebík M., Chlebíková J.: Approximation hardness of edge dominating set problems. J. Combin. Optim. 11(3), 279–290 (2006)

    Article  MATH  Google Scholar 

  6. Demange, M., Ekim, T.: Minimum maximal matching is NP-hard in regular bipartite graphs. In: TAMC 2008, Lecture Notes in Computer Science, vol. 4978, pp. 364–374 (2008)

  7. Edmonds J.: Paths, trees and flowers. Can. J. Math. 17, 449–467 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fujito T., Nagamochi H.: A 2-approximation algorithm for the minimum weight edge dominating set problem. Discrete Appl. Math. 118, 199–207 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Horton J.D., Kilakos K.: Minimum edge dominating sets. SIAM J. Discrete Math. 6(3), 375–387 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hwang S.F., Chang G.J.: The edge domination problem. Discuss. Math. Graph. Theory 15(1), 51–57 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  11. Mitchell, S.L., Hedetniemi, S.T.: Edge domination in trees. In: Proceedings of the 8th Southeastern Conference on Combinatorics, Graph Theory and Computing, pp. 489–509. Louisiana State University, Baton Rouge (1977)

  12. Richey M.B., Parker R.G.: Minimum-maximal matching in series-parallel graphs. Eur. J. Oper. Res. 33(1), 98–105 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  13. Sherali H.D., Smith J.C.: Improving discrete model representations via symmetry considerations. Manag. Sci. 47, 1396–1407 (2001)

    Article  MATH  Google Scholar 

  14. Shi J., Yamamoto Y.: A global optimization method for minimum maximal flow problem. ACTA Math. Vietnamica 22(1), 271–287 (1997)

    MathSciNet  MATH  Google Scholar 

  15. Srinivasan A., Madhukar K., Nagavamsi P., Pandu Rangan C., Chang M.-S.: Edge domination on bipartite permutation graphs and cotriangulated graphs. Inf. Process. Lett. 56(3), 165–171 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  16. Yannakakis M., Gavril F.: Edge dominating sets in graphs. SIAM J. Appl. Math. 38, 364–372 (1980)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Caner Taşkın.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taşkın, Z.C., Ekim, T. Integer programming formulations for the minimum weighted maximal matching problem. Optim Lett 6, 1161–1171 (2012). https://doi.org/10.1007/s11590-011-0351-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-011-0351-x

Keywords

Navigation