[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

On the optimality of list scheduling for online uniform machines scheduling

  • Short Communication
  • Published:
Optimization Letters Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

This paper considers classical online scheduling problems on uniform machines. We show the tight competitive ratio of LS for any combinations of speeds of three machines. We prove that LS is optimal when s 3 ≥ s 2 ≥ s 1 = 1 and \({s_3^2\geq s_2^2+s_2s_3+s_2}\), where s 1, s 2, s 3 are the speeds of three machines. On the other hand, LS can not be optimal for all combinations of machine speeds, even restricted to the case of 1 = s 1 = s 2 < s 3. For m ≥ 4 machines, LS remains optimal when one machine has very large speed, and the remaining machines have the same speed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

References

  1. Berman P., Charikar M., Karpinski M.: On-line load balancing for related machines. J. Algorithms 35, 108–121 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chen B., van Vliet A., Woeginger G.J.: New lower and upper bounds for on-line scheduling. Oper. Res. Lett. 16, 221–230 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen B., van Vliet A., Woeginger G.J.: An optimal algorithm for preemptive on-line scheduling. Oper. Res. Lett. 18, 127–131 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cheng T.C.E., Ng C.T., Kotov V.: A new algorithm for online uniform-machine scheduling to minimize the makespan. Inform. Process. Lett. 99, 102–105 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cho Y., Sahni S.: Bounds for list schedules on uniform processors. SIAM J. Comput. 9, 91–103 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ebenlendr T., Jawor W., Sgall J.: Preemptive online scheduling: optimal algorithms for all speeds. Algorithmica 53, 504–522 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Epstein L., Noga J., Seiden S., Sgall J., Woeginger G.J.: Randomized on-line scheduling on two uniform machines. J. Scheduling 4, 71–92 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Faigle U., Kern W., Turan G.: On the performance of on-line algorithm for particular problem. Acta Cybern. 9, 107–119 (1989)

    MathSciNet  MATH  Google Scholar 

  9. Graham R.L.: Bounds for certain multiprocessing anomalies. Bell Syst. Tech. J. 45, 1563–1581 (1966)

    Google Scholar 

  10. Kovács A.: Tighter approximation bounds for LPT scheduling in two special cases. J. Discrete Algorithms 7, 327–340 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Li R.H., Shi L.J.: An online algorithm for some uniform professor scheduling. SIAM J. Comput. 27, 414–422 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Pardalos, P.M., Du, D.-Z. (eds): Handbook of Combinatorial Optimization. Kluwer, Dordrecht (1998)

    Google Scholar 

  13. Pardalos, P.M., Resende, M. (eds): Handbook of Applied Optimization. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  14. Rudin J.F. III, Chandrasekaran R.: Improved bound for the online scheduling problem. SIAM J. Comput. 32, 717–735 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Wen J., Du D.: Preemptive on-line scheduling for two uniform processors. Oper. Res. Lett. 23, 113–116 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Xu, Y., Zhang, W., Zheng, F.: Optimal algorithms for the online time series search problem. In: Du, D.-Z., Hu, X., Pardalos, P. M. (eds.) Combinatorial Optimization and Applications, Lecture Notes in Computer Science, vol. 5573, pp. 322–333 (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyi Tan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, F., Tan, Z. & Yang, Y. On the optimality of list scheduling for online uniform machines scheduling. Optim Lett 6, 1551–1571 (2012). https://doi.org/10.1007/s11590-011-0335-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-011-0335-x

Keywords

Navigation