[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Generalized pseudolinearity

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

In this paper, we introduce the notion of generalized pseudolinearity for nondifferentiable and nonconvex but locally Lipschitz functions defined on a Banach space. We present some characterizations of generalized pseudolinear functions. The characterizations of the solution set of a nonconvex and nondifferentiable but generalized pseudolinear program are obtained. The results of this paper extend various results for pseudolinear functions, pseudoinvex functions and η-pseudolinear functions, and also for pseudoinvex programs, pseudolinear programs and η-pseudolinear programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ansari Q.H., Schaible S., Yao J.C.: η−pseudolinearity. Riviste Mat. Sci. Econom. Soc. 22, 31–39 (1999)

    MathSciNet  Google Scholar 

  2. Chew K.L., Choo E.U.: Pseudolinearity and efficiency. Math. Prog. 28, 226–239 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  3. Clarke F.H.: Optimization and Nonsmooth Analysis. SIAM, Philadelphia, Pennsylvania (1990)

    Book  MATH  Google Scholar 

  4. Floudas, A.C., Pardalos, P.M. (eds): Encyclopedia of Optimization. Springer, Berlin (2009)

    MATH  Google Scholar 

  5. Jabarootian T., Zafarani J.: Generalized invariant monotonicity and invexity of non-differentiable functions. J. Global Optim. 36, 537–564 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Jeyakumar V., Mond B.: On generalised convex mathematical programming. J. Austral. Math. Soc. Ser. B 34, 43–53 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. Jeyakumar V., Yang X.Q.: On characterizing the solution sets of pseudolinear programs. J. Optim. Theory Appl. 87, 747–755 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  8. Komlósi S.: First and second order characterizations of pseudolinear functions. Eur. J. Oper. Res. 67, 278–286 (1993)

    Article  MATH  Google Scholar 

  9. Kortanek K.O., Evans J.P.: Pseudoconcave programming and Lagrange regularity. Oper. Res. 15, 882–892 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  10. Mangasarian O.L.: A simple characterization of solution sets of convex programs. Oper. Res. Lett. 7, 21–26 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  11. Martos B.: Nonlinear Programming; Theory and Methods. Amsterdam, North-Holland (1975)

    MATH  Google Scholar 

  12. Mishra S.K., Wang S.Y., Lai K.K.: On non-smooth α-invex functions and vector variational-like inequality. Optim. Lett. 2(1), 91–98 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Pardalos, P.M., Rassias, T.M., Khan, A.A. (eds): Nonlinear Analysis and Variational Problems. Springer, New York (2010)

    MATH  Google Scholar 

  14. Rapcsák T.: On pseudolinear functions. J. Oper. Res. 50, 353–360 (1991)

    Article  MATH  Google Scholar 

  15. Rapcsák T.: On the pseudolinearity of quadratic fractional functions. Optim. Lett. 1, 193–200 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Schaible S., Ibaraki T.: Fractional programming. Eur. J. Oper. Res. 12, 325–338 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  17. Yang X.M.: On characterizing the solution sets of pseudoinvex extremum problems. J Optim. Theory Appl. 140, 537–542 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qamrul Hasan Ansari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ansari, Q.H., Rezaei, M. Generalized pseudolinearity. Optim Lett 6, 241–251 (2012). https://doi.org/10.1007/s11590-010-0238-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-010-0238-2

Keywords

Navigation