[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

On a system of general mixed variational inequalities

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

In this paper, we introduce and consider a new system of general mixed variational inequalities involving three different operators. Using the resolvent operator technique, we establish the equivalence between the general mixed variational inequalities and the fixed point problems. We use this equivalent formulation to suggest and analyze some new explicit iterative methods for this system of general mixed variational inequalities. We also study the convergence analysis of the new iterative method under certain mild conditions. Since this new system includes the system of mixed variational inequalities involving two operators, variational inequalities and related optimization problems as special cases, results obtained in this paper continue to hold for these problems. Our results can be viewed as a refinement and improvement of the previously known results for variational inequalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brezis H.: Operateurs Maximaux Monotone et Semigroupes de Contractions dans les Espace d’Hilbert. North-Holland, Amsterdam (1973)

    Google Scholar 

  2. Chang S.S., Lee H.W.J., Chan C.K.: Generalized system for relaxed cocoercive variational inequalities in Hilbert spaces. Appl. Math. Lett. 20, 329–334 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Cristescu G., Lupsa L.: Non-connected Convexities and Applications. Kluwer Academic Publishers, Dordrecht (2002)

    MATH  Google Scholar 

  4. Giannessi F., Maugeri A.: Variational Inequalities and Network Equilibrium Problems. Plenum Press, New York (1995)

    MATH  Google Scholar 

  5. Giannessi F., Maugeri A., Pardalos P.M.: Equilibrium Problems, Nonsmooth Optimization and Variational Inequalities Problems. Kluwer Academic Publishers, Dordrecht (2001)

    Google Scholar 

  6. Glowinski R., Lions J.L., Tremolieres R.: Numerical Analysis of Variational Inequalities. North-Holland, Amsterdam (1981)

    MATH  Google Scholar 

  7. Huang Z., Noor M.A.: An explicit projection method for a system of nonlinear variational inequalities with different (γ, r)-cocoercive mappings. Appl. Math. Comput. 190, 356–361 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Lions J.L., Stampacchia G.: Variational inequalities. Commun. Pure Appl. Math. 20, 493–512 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  9. Noor M.A.: General variational inequalities. Appl. Math. Lett. 1, 119–121 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  10. Noor M.A.: Wiener–Hopf equations and variational inequalities. J. Optim. Theory Appl. 79, 197–206 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  11. Noor M.A.: Some recent advances in variational inequalities. Part I. Basic concepts. New Zealand J. Math. 26, 53–80 (1997)

    MATH  MathSciNet  Google Scholar 

  12. Noor M.A.: Some recent advances in variational inequalities. Part II. Other concepts. New Zealand J. Math. 26, 229–255 (1997)

    MATH  MathSciNet  Google Scholar 

  13. Noor M.A.: Some algorithms for general monotone mixed variational inequalities. Math. Comput. Modell. 29, 1–9 (1999)

    Google Scholar 

  14. Noor M.A.: New approximation schemes for general variational inequalities. J. Math. Anal. Appl. 251, 217–229 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  15. Noor M.A.: New extragradient-type methods for general variational inequalities. J. Math. Anal. Appl. 277, 379–395 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  16. Noor M.A.: Some developments in general variational inequalities. Appl. Math. Comput. 152, 199–277 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  17. Noor M.A.: Mixed quasi variational inequalities. Appl. Math. Comput. 146, 553–578 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  18. Noor M.A.: Fundamentals of mixed quasi variational inequalities. Int. J. Pure Appl. Math. 15, 137–258 (2004)

    MATH  MathSciNet  Google Scholar 

  19. Noor M.A.: Fundamentals of equilibrium problems. Math. Inequ. Appl. 9, 529–566 (2006)

    MATH  Google Scholar 

  20. Noor M.A.: On iterative methods for solving a system of mixed variational inequalities. Appl. Anal. 87, 99–108 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  21. Noor M.A.: Differentiable nonconvex functions and general variational inequalities. Appl. Math. Comput. 199, 623–630 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  22. Noor, M.A.: Variational inequalities and applications. Lecture Notes, Mathematics Department, COMSATS Institute of Information Technology, Islamabad, Pakistan (2007)

  23. Noor M.A.: Extended general variational inequalities. Appl. Math. Lett. 22, 182–186 (2009)

    Article  MathSciNet  Google Scholar 

  24. Noor M.A.: On a class of general variational inequalities. J. Adv. Math. Stud. 1, 75–86 (2008)

    Google Scholar 

  25. Noor M.A., Inayat Noor K., Rassias Th.M.: Some aspects of variational inequalities. J. Comput. Appl. Math. 47, 285–312 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  26. Noor M.A., Inayat Noor K., Rassias T.M.: Set-valued resolvent equations and mixed variational inequalities. J. Math. Anal. Appl. 220, 741–759 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  27. Noor M.A., Inayat Noor K.: Projection algorithms for solving system of general variational inequalities. Nonlinear Anal. 70, 2700–2706 (2009)

    Article  MATH  Google Scholar 

  28. Noor, M.A., Inayat Noor, K., Yaqoob, H.: On general mixed variational inequalities. Acta Appl. Math. (2008). doi:10.1007/s10440-008-9402.4

  29. Patriksson M.: Nonlinear Programming and Variational Inequalities: A Unified Approach. Kluwer Academic Publishers, Dordrecht (1998)

    Google Scholar 

  30. Stampacchia G.: Formes bilineaires coercivities sur les ensembles convexes. C. R. Acad. Sci. Paris 258, 4413–4416 (1964)

    MATH  MathSciNet  Google Scholar 

  31. Weng X.L.: Fixed point iteration for local strictly pseudocontractive mappings. Proc. Am. Math. Soc. 113, 727–731 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  32. Yao, Y., Noor, M.A., Inayat Noor, K., Liou, Y.C., Yaqoob, H.: Modified extragradient methods for a system of variational inequalities in Banach Spaces. Acta Appl. Math. (2009). doi:10.1007/s10440-009-9502.9

  33. Zhu D.L., Marcotte P.: Cocoercivity and its role in the convergence of iterative schemes for solving variational inequalities. SIAM J. Optim. 6, 614–726 (1996)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Aslam Noor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noor, M.A. On a system of general mixed variational inequalities. Optim Lett 3, 437–451 (2009). https://doi.org/10.1007/s11590-009-0123-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-009-0123-z

Keywords

Navigation