[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Projection methods for nonconvex variational inequalities

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

In this paper, we introduce and consider a new class of variational inequalities, which is called the nonconvex variational inequalities. We establish the equivalence between the nonconvex variational inequalities and the fixed-point problems using the projection technique. This equivalent formulation is used to discuss the existence of a solution of the nonconvex variational inequalities. We also use this equivalent alternative formulation to suggest and analyze a new iterative method for solving the nonconvex variational inequalities. We also discuss the convergence of the iterative method under suitable conditions. Our method of proof is very simple as compared with other techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brezis, H.: Operateurs maximaux monotone.Mathematical Studies, vol. 5.North-Holland, Amsterdam (1973)

  2. Bounkhel M., Tadji L., Hamdi A.: Iterative schemes to solve nonconvex variational problems. J. Inequal. Pure Appl. Math. 4, 1–14 (2003)

    Google Scholar 

  3. Clarke F.H., Ledyaev Y.S., Wolenski P.R.: Nonsmooth Analysis and Control Theory. Springer, Berlin (1998)

    MATH  Google Scholar 

  4. Kinderlehrer D., Stampacchia G.: An Introduction to Variational Inequalities and Their Applications. SIAM, Philadelphia (2000)

    MATH  Google Scholar 

  5. Lions J.L., Stampacchia G.: Variational inequalities. Comm. Pure. Appl. Math. 20, 493–512 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  6. Aslam Noor, M.: On Variational Inequalities, Ph.D. Thesis. Brunel University, London (1975)

  7. Aslam Noor M.: General variational inequalities. Appl. Math. Lett. 1, 119–121 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  8. Aslam Noor M.: Quasi variational inequalities. Appl. Math. Lett. 1, 367–370 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  9. Aslam Noor M.: Wiener-Hopf equations and variational inequalities. J. Optim. Theory Appl. 79, 197–206 (1993)

    Article  MathSciNet  Google Scholar 

  10. Aslam Noor M.: Some recent advances in variational inequalities, Part II, other concepts, New Zealand. J. Math. 26, 229–255 (1997)

    MATH  MathSciNet  Google Scholar 

  11. Aslam Noor M.: New approximation schemes for general variational inequalities. J. Math. Anal. Appl. 251, 217–229 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  12. Aslam Noor M.: Some developments in general variational inequalities. Appl. Math. Comput. 152, 199–277 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  13. Aslam Noor M.: Iterative schemes for nonconvex variational inequalities. J. Optim. Theory Appl. 121, 385–395 (2004)

    Article  MathSciNet  Google Scholar 

  14. Aslam Noor M.: Fundamentals of mixed quasi variational inequalities. Int. J. Pure Appl. Math. 15, 137–258 (2004)

    MATH  MathSciNet  Google Scholar 

  15. Aslam Noor M.: Fundamentals of equilibrium problems. Math. Inequal. Appl. 9, 529–566 (2006)

    MATH  MathSciNet  Google Scholar 

  16. Aslam Noor M.: Merit functions for general variational inequalities. J. Math. Anal. Appl. 316, 736–752 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  17. Aslam Noor M.: Differentiable nonconvex functions and general variational inequalities. Appl. Math. Comput. 199, 623–630 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  18. Aslam Noor, M.: Some iterative methods for general nonconvex variational inequalities. Comput. Math. Model. 21 (2010)

  19. Aslam Noor M.: On a class of general variational inequalities. J. Adv. Math. Stud. 1, 75–86 (2008)

    Google Scholar 

  20. Aslam Noor M.: Extended general variational inequalities. Appl. Math. Lett. 22, 182–186 (2009)

    Article  MathSciNet  Google Scholar 

  21. Aslam Noor, M.: Variational Inequalities and Applications. Lecture Notes, Mathematics Department. COMSATS Institute of Information Technology, Islamabad, 2007–2009

  22. Aslam Noor M., Inayat Noor K.: Projection algorithms for solving system of general variational inequalities. Nonl. Anal. 70, 2700–2706 (2009)

    Article  MATH  Google Scholar 

  23. Aslam Noor M., Inayat Noor K., Rassias Th.M.: Some aspects of variational inequalities. J. Comput. Appl. Math. 47, 285–312 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  24. Aslam Noor, M., Inayat Noor, K., Yaqoob, H.: On general mixed variational inequalities. Acta Appl. Math. (2008). doi:10.1007/s10440-008-9402.4

  25. Pang L.P., Shen J., Song H.S.: A modified predictor-corrector algorithm for solving nonconvex generalized variational inequalities. Comput. Math. Appl. 54, 319–325 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  26. Poliquin R.A., Rockafellar R.T., Thibault L.: Local differentiability of distance functions. Trans. Am. Math. Soc. 352, 5231–5249 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  27. Stampacchia G.: Formes bilineaires coercitives sur les ensembles convexes. C. R. Acad. Sci. Paris 258, 4413–4416 (1964)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Aslam Noor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aslam Noor, M. Projection methods for nonconvex variational inequalities. Optim Lett 3, 411–418 (2009). https://doi.org/10.1007/s11590-009-0121-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-009-0121-1

Keywords

Navigation