[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A generalized Newton method for absolute value equations

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

A direct generalized Newton method is proposed for solving the NP-hard absolute value equation (AVE) Ax − |x| = b when the singular values of A exceed 1. A simple MATLAB implementation of the method solved 100 randomly generated 1,000-dimensional AVEs to an accuracy of 10−6 in less than 10 s each. Similarly, AVEs corresponding to 100 randomly generated linear complementarity problems with 1,000 × 1,000 nonsymmetric positive definite matrices were also solved to the same accuracy in less than 29 s each.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bertsekas D.P.: Nonlinear Programming. Athena Scientific, Belmont (1995)

    MATH  Google Scholar 

  2. Chung S.J.: NP-completeness of the linear complementarity problem. J. Optim. Theory Appl. 60, 393–399 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  3. Cottle R.W., Dantzig G.: Complementary pivot theory of mathematical programming. Linear Algebra Appl. 1, 103–125 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cottle R.W., Pang J.S., Stone R.E.: The Linear Complementarity Problem. Academic Press, New York (1992)

    MATH  Google Scholar 

  5. Mangasarian, O.L.: Absolute value equation solution via concaveminimization. Optim. Lett. 1(1), 3–8 (2007). ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/06-02.pdf

  6. Mangasarian, O.L.: Absolute value programming. Comput. Optim. Appl. 36(1), 43–53 (2007). ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/05-04.ps

    Google Scholar 

  7. Mangasarian, O.L., Meyer, R.R.: Absolute value equations. Linear Algebra Appl. 419, 359–367 (2006). ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/05-06.pdf

    Google Scholar 

  8. Ortega J.M., Rheinboldt W.C.: Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York (1970)

    MATH  Google Scholar 

  9. Polyak B.T.: Introduction to Optimization. Optimization Software Inc, Publications Division, New York (1987)

    Google Scholar 

  10. Rockafellar R.T.: New applications of duality in convex programming. In Proceedings Fourth Conference on Probability, Brasov (1971)

    Google Scholar 

  11. Rohn, J.: A theorem of the alternatives for the equation A x + B|x| = b. Linear Multilinear Algebra, 52(6), 421–426 (2004). http://www.cs.cas.cz/~rohn/publist/alternatives.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. L. Mangasarian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mangasarian, O.L. A generalized Newton method for absolute value equations. Optim Lett 3, 101–108 (2009). https://doi.org/10.1007/s11590-008-0094-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-008-0094-5

Keywords

Navigation