[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Improving Li3V2(PO4)3 cathode performance by Mn2+ doping for high-rate aqueous zinc ion hybrid batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Li3V2-xMnx(PO4)3 (x = 0, 0.02, 0.04, 0.06 and 0.1) cathode materials for aqueous zinc-ion hybrid batteries (AZHBs) have been synthesized by freeze-drying-assisted sol–gel method. The effects of Mn2+ dopping content on the structure, morphology, and electrochemical performance of the samples were investigated. XRD results indicated that the Li3V2-xMnx(PO4)3 products belong to the Li3V2(PO4)3 structure (P21/n). XPS results indicate that Mn2p1/2 and Mn2p2/3 are located at 653.94 eV and 642.46 eV, respectively, with trace amounts of Mn doping in the material. SEM images show that Li3V1.94Mn0.06(PO4)3 sample has more dispersed and smaller particle size in morphology, and the uniform distribution of elements of Li3V1.94Mn0.06(PO4)3 sample (V, Mn, P, O) in the precursor composites was confirmed by EDAX. The Zn// Li3V1.94Mn0.06(PO4)3 battery delivers a superior initial capacity of 106.5 mAh g−1 at the current density of 2 C (200 mA g−1), remarkable cycle stability (98% capacity retention for 50th cycles) and superior rate capability (when current density reaches up to 20 C, the reversible capacities are 98mAh g−1). The results of CV indicated that the diffusion coefficient of zinc ion in Li3V1.94Mn0.06(PO4)3 electrode is 1.30 × 10–12 cm2 s−1, which is larger than the other four electrodes. The result of EIS demonstrated that the Rct value.

of Li3V1.94Mn0.06(PO4)3 is the lowest (243.5 Ω), which is in good agreement with rate capability and cyclic results. ex situ XRD results demonstrate that Li+ ion can be inserted or de-inserted reversibly during charge and discharge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Zhou S, Wu X, Xiang Y, Zhu L, Liu Z, Zhao C (2021) Manganese-based cathode materials for aqueous zinc ion batteries. Prog Chem 33:649–669

    CAS  Google Scholar 

  2. Hao J, Yang F, Zhang S, He H, Xia G, Liu Y, Didier C, Liu T, Pang WK, Peterson VK, Lu J, Guo Z (2020) Designing a hybrid electrode toward high energy density with a staged Li+ and PF6- deintercalation/intercalation mechanism. P NATL ACAD SCI USA 117:2815–2823

    Article  CAS  Google Scholar 

  3. Li B, Xue J, Han C, Liu N, Ma K, Zhang R, Wu X, Dai L, Wang L, He Z (2021) A hafnium oxide-coated dendrite-free zinc anode for rechargeable aqueous zinc-ion batteries. J Colloid Interface Sci 599:467–475

    Article  CAS  Google Scholar 

  4. Xia C, Guo J, Li P, Zhang X, Alshareef HN (2018) Highly stable aqueous zinc-ion storage using a layered calcium vanadium oxide bronze cathode. Angew Chem Int Ed Engl 57:3943–3948

    Article  CAS  Google Scholar 

  5. Tang F, He T, Zhang H, Wu X, Li Y, Long F, Xiang Y, Zhu L, Wu J, Wu X (2020) The MnO@N-doped carbon composite derived from electrospinning as cathode material for aqueous zinc ion battery. J Electroanal Chem 873:114368

    Article  CAS  Google Scholar 

  6. Xu C, Li B, Du H, Kang F (2012) Energetic zinc ion chemistry: the rechargeable zinc ion battery. Angew Chem Int Ed Engl 51:933–935

    Article  CAS  Google Scholar 

  7. Luo JY, Cui WJ, He P, Xia YY (2010) Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte. Nat Chem 2:760–765

    Article  Google Scholar 

  8. Li G, Yang Z, Jiang Y, Jin C, Huang W, Ding X, Huang Y (2016) Towards polyvalent ion batteries: A zinc-ion battery based on NASICON structured Na3V2(PO4)3. Nano Energy 25:211–217

    Article  CAS  Google Scholar 

  9. Jian Z, Han W, Lu X, Yang H, Hu Y-S, Zhou J, Zhou Z, Li J, Chen W, Chen D, Chen L (2013) Superior electrochemical performance and storage mechanism of Na3V2(PO4)3 cathode for room-temperature sodium-ion batteries. Adv Energy Mater 3:156–160

    Article  CAS  Google Scholar 

  10. Zhao HB, Hu CJ, Cheng HW, Fang JH, Xie YP, Fang WY, Doan TN, Hoang TK, Xu JQ, Chen P (2016) Novel rechargeable M3V2(PO4)3//Zinc (M = Li, Na) hybrid aqueous batteries with excellent cycling performance. Sci Rep 6:25809

    Article  CAS  Google Scholar 

  11. Li G, Yang Z, Jiang Y, Zhang W, Huang Y (2016) Hybrid aqueous battery based on Na3V2(PO4)3/C cathode and zinc anode for potential large-scale energy storage. J Power Sources 308:52–57

    Article  CAS  Google Scholar 

  12. Jiang Y, Zou Q, Liu S, Zeng H, Chen L, Xiang Y, Li J, Wu X, Wu J, Xiong L (2021) The Li3V2(PO4)3@C materials prepared by freeze-drying assisted sol-gel method for an aqueous zinc ion hybrid battery. J Electroanal Chem 900:115685

    Article  CAS  Google Scholar 

  13. Shin J, Yang J, Sergey C, Song MS, Kang YM (2017) Carbon nanofibers heavy laden with Li3V2(PO4)3 particles featuring superb kinetics for high-power lithium ion battery. Adv Sci 4:1700128

    Article  Google Scholar 

  14. Chen D, Lu M, Wang B, Cheng H, Yang H, Cai D, Han W, Fan HJ (2021) High-mass loading V3O7·H2O nanoarray for Zn-ion battery: New synthesis and two-stage ion intercalation chemistry. Nano Energy 83:105835

    Article  CAS  Google Scholar 

  15. Chen T, Zhou J, Fang G, Tang Y, Tan X, Pan A, Liang S (2018) Rational design and synthesis of Li3V2(PO4)3/C nanocomposites as high-performance cathodes for lithium-ion batteries. ACS Sustainable Chemistry & Engineering 6:7250–7256

    Article  CAS  Google Scholar 

  16. Wang X, Ye L, Zou Y, Zhao L, Jiang Q (2021) Constructing ultra-long life and super-rate rechargeable aqueous zinc-ion batteries by integrating Mn doped V6O13 nanoribbons with sulfur-nitrogen modified porous carbon. Mater Today Energy 19:100593

    Article  CAS  Google Scholar 

  17. Liu L, Xiao W, Guo J, Cui Y, Ke X, Cai W, Liu J, Chen Y, Shi Z, Chou S (2019) Nanocomposite LiFePO4·Li3V2(PO4)3/C synthesized by freeze-drying assisted sol-gel method and its magnetic and electrochemical properties. Sci China Mater 61:39–47

    Article  Google Scholar 

  18. Tang B, Zhou J, Fang G, Liu F, Zhu C, Wang C, Pan A, Liang S (2019) Engineering the interplanar spacing of ammonium vanadates as a high-performance aqueous zinc-ion battery cathode. J Mater Chem A 7:940–945

    Article  CAS  Google Scholar 

  19. Long F, Xiang Y, Yang S, Li Y, Du H, Liu Y, Wu X, Wu X, JoC Science I (2022) Layered manganese dioxide nanoflowers with Cu2+ and Bi3+ intercalation as high-performance cathode for aqueous zinc-ion battery. J Colloid Interface Sci 616:101–109

    Article  CAS  Google Scholar 

  20. Meng W, Li C, Yao M, He Z, Wu X, Jiang Z, Dai L, Wang L (2020) Synthesis and electrochemical performance of Li1+xTi2xFex(PO4)3/C anode for aqueous lithium ion battery. Adv Powder Technol 31:1359–1364

    Article  CAS  Google Scholar 

  21. Zhao J, Li Y, Peng X, Dong S, Ma J, Cui G, Chen L (2016) High-voltage Zn/LiMn0.8Fe0.2PO4 aqueous rechargeable battery by virtue of “water-in-salt” electrolyte. Electrochem Commun 69:6–10

    Article  CAS  Google Scholar 

  22. Li Q, Rui X, Chen D, Feng Y, Xiao N, Gan L, Zhang Q, Yu Y, Huang S (2020) A high-capacity ammonium vanadate cathode for zinc-ion battery. Nanomicro Lett 12:67

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Cui J, Wu X, Yang S, Li C, Tang F, Chen J, Chen Y, Xiang Y, Wu X, He Z (2018) Cryptomelane-type KMn8O16 as potential cathode material - for aqueous zinc ion battery. Front Chem 6:352

    Article  Google Scholar 

  24. Tan H, Xu L, Geng H, Rui X, Li C, Huang S (2018) Nanostructured Li3V2(PO4)3 cathodes. Small 14:e1800567

    Article  Google Scholar 

  25. Ding X-K, Liu J, Zhang L-L, Yang X-L (2018) High-performance Li3V2(PO4)3/C cathode material with a mixed morphology prepared by solvothermal assisted sol–gel process. Ionics 25:2057–2067

    Article  Google Scholar 

  26. Yaghtin A, Masoudpanah SM, Hasheminiasari M, Salehi A, Safanama D, Ong CK, Adams S, Reddy MV (2020) Effect of reducing agent on solution synthesis of Li3V2(PO4)3 cathode material for lithium ion batteries. Molecules 25:3746

    Article  CAS  Google Scholar 

  27. Yu S, Mertens A, Kungl H, Schierholz R, Tempel H, Eichel R-A (2017) Morphology dependency of Li3V2(PO4)3/C cathode material regarding to rate capability and cycle life in lithium-ion batteries. Electrochim Acta 232:310–322

    Article  CAS  Google Scholar 

  28. Ma L, Chen S, Long C, Li X, Zhao Y, Liu Z, Huang Z, Dong B, Zapien JA, Zhi C (2019) Achieving high-voltage and high-capacity aqueous rechargeable zinc ion battery by incorporating two-species redox reaction. Adv Energy Mater 9:1902446

    Article  CAS  Google Scholar 

  29. Hao J, Li B, Li X, Zeng X, Zhang S, Yang F, Liu S, Li D, Wu C, Guo Z (2020) An in-depth study of Zn metal surface chemistry for advanced aqueous Zn-ion batteries. Adv Mater 32:e2003021

    Article  Google Scholar 

  30. Ding J, Du Z, Gu L, Li B, Wang L, Wang S, Gong Y, Yang S (2018) Ultrafast Zn2+ intercalation and deintercalation in vanadium dioxide. Adv Mater 30:e1800762

    Article  Google Scholar 

  31. Tang F, Gao J, Ruan Q, Wu X, Wu X, Zhang T, Liu Z, Xiang Y, He Z, Wu X (2020) Graphene-Wrapped MnO/C Composites by MOFs-Derived as Cathode Material for Aqueous Zinc ion Batteries. Electrochimica Acta 353:136570

    Article  CAS  Google Scholar 

  32. Yang G, Wei T, Wang C (2018) Self-healing lamellar structure boosts highly stable zinc-storage property of bilayered vanadium oxides. ACS Appl Mater Interfaces 10:35079–35089

    Article  CAS  Google Scholar 

  33. Yang S, Zhang M, Wu X, Wu X, Zeng F, Li Y, Duan S, Fan D, Yang Y, Wu X (2019) The excellent electrochemical performances of ZnMn2O4/Mn2O3: The composite cathode material for potential aqueous zinc ion batteries. J Electroanal Chem 832:69–74

    Article  CAS  Google Scholar 

  34. Li C, Yuan W, Li C, Wang H, Wang L, Liu Y, Zhang N (2021) Boosting Li3V2(PO4)3 cathode stability using a concentrated aqueous electrolyte for high-voltage zinc batteries. Chem Commun 57:4319–4322

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51862008, 52064014, 51762017 and 51762016), the National Natural Science Foundation of Hunan Province, China (Nos. 2020JJ5457, 2020JJ4505), the Educational Commission of Hunan Province, China (Nos. 19A416, S201910531053), the Research Foundation of Jishou University of Hunan Province, and China (No. Jdy20030, Jdy21025).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanhong Xiang or Lizhi Xiong.

Ethics declarations

Conflicts of interest

The authors declare no competing financial interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Xiang, Y., Zou, Q. et al. Improving Li3V2(PO4)3 cathode performance by Mn2+ doping for high-rate aqueous zinc ion hybrid batteries. Ionics 28, 3855–3864 (2022). https://doi.org/10.1007/s11581-022-04561-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-022-04561-z

Keywords

Navigation