[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Complexity control of HEVC encoders targeting real-time constraints

  • Special Issue Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

High Efficiency Video Coding (HEVC) encoders impose several challenges in computing constrained embedded applications, especially under real-time throughput constraints. This paper proposes an adaptive complexity control scheme (CCS) that dynamically adjusts the encoder to the varying computing capabilities of the hardware platform. To design an efficient scheme, an extensive complexity analysis of key HEVC encoding parameters is herein presented. For this analysis, we developed a parameterized complexity model called “arithmetic complexity,” which can be widely applied to any computing platform. Our results demonstrate that the proposed scheme provides time savings ranging from 10 up to 90 % with an average error (between target and effective complexity) of 1.2 %. Our adaptability and control performance analysis show that the scheme rapidly adapts to dynamic set-point adjustments. Compared to state of the art, our complexity control achieves more accurate results and extra features (such as dynamic set-point adjustment) at the cost of minor losses in coding efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. CISCO: Cisco Visual Networking Index: Forecast and Methodology, [Online]. www.cisco.com/ (2012). Accessed 19 June 2012

  2. ITU-T: ITU-T Recommendation H.265: High Efficiency Video Coding (2013)

  3. Grois, D., Marpe, D., Mulayoff, A., Itzhaky, B., Hadar, O.: Performance comparison of H.265/MPEG-HEVC, VP9, and H.264/MPEG-AVC encoders. In: Picture Coding Symposium (PCS), San Jose (2013)

  4. Bjontegaard, G.: Calculation of average PSNR differences between RD-curves, Technical Report VCEG-M33, ITU-T SG16/Q6, Austin, TX, USA (2001)

  5. McCann, K., Bross, B., Han, W.J., Kim, I.K., Sugimoto, K., Sullivan, G.J.: High efficiency video coding (HEVC) test model 10 (HM 10) encoder description, Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11, 12th Meeting, Geneva (2013)

  6. Vanne, J., Viitanen, M., Hamalainen, T.D., Hallapuro, A.: Comparative rate-distortion-complexity analysis of HEVC and AVC video codecs. IEEE Trans. Circuits Syst. Video Technol. 22(12), 1885–1898 (2012)

    Article  Google Scholar 

  7. Correa, G., Assunção, P., Agostini, L., da Silva Cruz, L.A.: Performance and computational complexity assessment of high-efficiency video encoders. IEEE Trans. Circuits Syst. Video Technol. 22(12), 1899–1909 (2012)

    Article  Google Scholar 

  8. Jianfeng, R., Kehternavaz, N.: Fast adaptive termination mode selection for H.264 scalable video coding. J. Real-Time Image Proc. 4(1), 13–21 (2009)

    Article  Google Scholar 

  9. Choi, K., Park, S.-H., Jang, E.: Coding tree pruning based CU early termination, Torino (2011)

  10. Kim, J., Yang, J., Won, K., Jeon, B.: Early determination of mode decision for HEVC. In: Picture Coding Symposium (PCS), Krakow (2012)

  11. Cassa, M.B. Naccari, M., Pereira, F.: Fast rate distortion optimization for the emerging HEVC standard. In: Picture Coding Symposium (PCS), Krakow (2012)

  12. Shen, X., Yu, L., Chen, J.: Fast coding unit size selection for HEVC based on Bayesian decision rule. In: Picture Coding Symposium (PCS), Krakow (2012)

  13. Grecos, C., Yang, M.: Fast mode prediction for the Baseline and main profiles in the H.264 video coding standard. IEEE Trans. Multimed. 8(6), 1125–1134 (2006)

    Article  Google Scholar 

  14. Sung, Y.-H., Wang, J.-C.: Fast mode decision for H.264/AVC based on rate-distortion clustering. IEEE Trans. Multimed. 14(3), 693–702 (2012)

    Article  Google Scholar 

  15. Ou, Y.-F., Ma, Z., Liu, T., Wang, Y.: Perceptual quality assessment of video considering both frame rate and quantization artifacts. IEEE Trans. Circuits Syst. Video Technol. 21(3), 286–298 (2011)

    Article  Google Scholar 

  16. Jiménez-Moreno, A., Martínez-Enríquez, E., Díaz-de-María, F.: Mode decision-based algorithm for complexity control in H.264/AVC. IEEE Trans. Multimed. 15(5), 1094–1109 (2013)

    Article  Google Scholar 

  17. Huijibers, E.A.M., Ozelebi, T., Bril, R.J.: Complexity scalable motion estimation control for H.264/AVC. 2011 IEEE International Conference on Consumer Electronics (ICCE), pp. 49–50, (2011)

  18. Corrêa, G., Assunção, P., da Silva Cruz, L.A., Agostini, L.: Adaptive coding tree for complexity control of high efficiency video encoders. In: Picture Coding Symposium (PCS), Krakow (2012)

  19. Correa, G., Assuncao, P., Agostini, L., da Silva Cruz, L.A.: Complexity scalability for real-time HEVC encoders. J. Real-Time Image Process. 1(1), 1–16 (2014)

    Google Scholar 

  20. Zhao, T., Wang, Z., Kwong, S.: Flexible mode selection and complexity allocation in high efficiency video coding. IEEE J. Select. Top. Signal Process. 7(6), 1135–1144 (2013)

    Article  Google Scholar 

  21. Kannangara, C.S.: Complexity Management of H.264/AVC video compression. [Online]. https://openair.rgu.ac.uk/bitstream/10059/643/1/Kannangara%20PhD.pdf (2006). Accessed 2013

  22. Kannangara, C.S., Richardson, I.E., Bystrom, M., Zhao, Y.: Complexity control of H.264/AVC based on mode-conditional cost probability distributions. IEEE Trans. Multimed. 11(3), 433–442 (2009)

    Article  Google Scholar 

  23. Binkert, N.: The gem5 simulator. ACM SIGARCH Computer Architecture, pp. 1–7, (2011)

  24. Paoloni, G.: How to Benchmark Code Execution Times on Intel IA-32 and IA-64 Instruction Set Architectures, Intel Corporation (2010)

  25. Nalluri, P., Alves, L., Navarro, A.: A novel SAD architecture for variable block size motion estimation in HEVC video coding. In: International Symposium on System on Chip (SoC) (2013)

  26. Ahmed, A., Shahid, M.U., Rehman, A.: N-point DCT VLSI architecture for emerging HEVC standard. Hindawi: VLSI Design 2012, 13 (2012)

    Google Scholar 

  27. Diniz, C.M., Shafique, M., Bampi, S., Henkel, J.: High-throughput interpolation hardware architecture with coarse-grained reconfigurable datapaths for HEVC. In: International Conference on Image Processing, Melbourne (2013)

  28. Bossen, F.: Common test conditions and software reference configurations. Geneva (2011)

  29. Astrom, K.J., Hagglund, T.: PID Controllers: Theory, Design and Tuning, 2 ed., ISA: The Instrumentation, Systems, and Automation Society (1995)

  30. Grellert, M., Shafique, M., Khan, M.U.K., Agostini, L., Mattos, J.C.B., Henkel, J.: An adaptive workload management scheme for Hevc encoding. In: International Conference on Image Processing (2013)

  31. Ziegler, J.G., Nichols, N.B.: Optimum settings for automatic controllers. J. Dyn. Syst. Meas. Control 115(2B), 220–222 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mateus Grellert.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grellert, M., Zatt, B., Shafique, M. et al. Complexity control of HEVC encoders targeting real-time constraints. J Real-Time Image Proc 13, 5–24 (2017). https://doi.org/10.1007/s11554-016-0602-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-016-0602-2

Keywords