Abstract
Hyperspectral unmixing is essential for efficient hyperspectral image processing. Nonnegative matrix factorization based on minimum volume constraint (MVC-NMF) is one of the most widely used methods for unsupervised unmixing for hyperspectral image without the pure-pixel assumption. But the model of MVC-NMF is unstable, and the traditional solution based on projected gradient algorithm (PG-MVC-NMF) converges slowly with low accuracy. In this paper, a novel parallel method is proposed for minimum volume constrained hyperspectral image unmixing on CPU–GPU Heterogeneous Platform. First, a optimized unmixing model of minimum logarithmic volume regularized NMF is introduced and solved based on the second-order approximation of function and alternating direction method of multipliers (SO-MVC-NMF). Then, the parallel algorithm for optimized MVC-NMF (PO-MVC-NMF) is proposed based on the CPU–GPU heterogeneous platform, taking advantage of the parallel processing capabilities of GPUs and logic control abilities of CPUs. Experimental results based on both simulated and real hyperspectral images indicate that the proposed algorithm is more accurate and robust than the traditional PG-MVC-NMF, and the total speedup of PO-MVC-NMF compared to PG-MVC-NMF is over 50 times.
Similar content being viewed by others
References
Liu, X., Xia, W., Wang, B., Zhang, L.: An approach based on constrained nonnegative matrix factorization to unmix hyperspectral data. IEEE Trans. Geosci. Remote Sens. 49(2), 757–772 (2011)
Sanchez, S., Ramalho, R., Sousa, L., Plaza, A.: Real-time implementation of remotely sensed hyperspectral image unmixing on GPUs. J. Real Time Image Proc. (2012). doi:10.1007/s11554-012-0269-2
Bioucas-Dias, J.M.P., Plaza, A., Dobigeon, N., Parente, M., et al.: Hyperspectral unmixing overview: geometrical, statistical, and sparse regression-based approaches. IEEE J. Sel. Topics Appl. Earth Obs Remote Sens. 5(2), 354–379 (2012)
Nascimento, J.M.P., Bioucas-Dias, J.M.: Does independent component analysis play a role in unmixing hyperspectral data. IEEE Trans. Geosci. Remote Sens. 43(1), 175–187 (2005)
Nascimento, J.M.P., Bioucas-Dias, J.M.: Hyperspectral unmixing algorithm via dependent component analysis. 2007 IEEE Int. Geosci. Remote Sens. Symp. 4033–4036 (2007)
Nascimento, J.M.P., Bioucas-Dias, J.M.: Vertex component analysis: a fast algorithm to unmix hyperspectral data. IEEE Trans. Geosci. Remote Sens. 43(4), 898–910 (2005)
Winter, M., N-FINDR: An algorithm for fast autonomous spectral endmember determination in hyperspectral data. In: SPIE Imaging Spectrometry V, pp. 266–275. SPLE Pub, San Diego, Washington (1999)
Chang, C.I., Wu, C.C., Liu, W., Ouyang, Y.C.: A new growing method for simplex-based endmember extraction algorithm. IEEE Trans. Geosci. Remote Sens. 44(10), 2804–2819 (2006)
Chi, C.Y., Chan, T.H., Ma, W.K.: A convex analysis based minimum-volume enclosing simplex algorithm for hyperspectral unmixing. In: IEEE International Conference in Acoustics, Speech and Signal Porcessing, ICASSP’2009. Taiwan (2009)
Miao, L., Qi, H.: Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization. IEEE Trans. Geosci. Remote Sens. 45(3), 765–777 (2007)
Yu, Y., Guo, S., Sun, W.: Minimum distance constrained non-negative matrix factorization for the endmember extraction of hyperspectral images. Proc. SPIE 6790, 679015 (2007)
Pauca, V.P., Piper, J., Plemmons, R.J.: Nonnegative matrix factorization for spectral data analysis. Lin. Alg. Appl. 416, 29–47 (2006)
Jia, S., Qian, Y.: Constrained nonnegative matrix factorization for hyperspectral unmixing. IEEE Trans. Geosci. Remote Sens. 47(1), 161–173 (2009)
Yang, Z., Zhou, G., Xie, S., Ding, S., Yang, J., Zhang, J.: Blind spectral unmixing based on sparse nonnegative matrix factorization. IEEE Trans. Image Process. 25(4), 1112–1125 (2011)
Qian, Y., Jia, S., Zhou, J., Robles-Kelly, A.: Hyperspectral unmixing via l 1/2 sparsity-constrained nonnegative matrix factorization. IEEE Trans. Geosci. Remote Sens. 49(11), 1–16 (2011)
Christophe, E., Michel, J., Inglada, J.: Remote sensing processing: from multicore to gpu. IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens. 4(3), 643–652 (2011)
Lee, C.A., Gasster, S.D., Plaza, A., et al.: Recent developments in high performance computing for remote sensing: a review. IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens. 4(3), 508–527 (2011)
Plaza, A., Du, Q., Chang, Y.-L., King, R.L.: High performance computing for hyperspectral remote sensing. IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens. 4(3), 528–544 (2011)
Sanchez, S., Ramalho, R., Sousa, L., Plaza, A.: Real-time implementation of remotely sensed hyperspectral image unmixing on GPUs. J. Real Time Image Proc. (2012). doi:10.1007/s11554-012-0269-2
Wu, X., Huang, B., Plaza, A., Li, Y., Wu, C.: Real-time implementation of the pixel purity index algorithm for endmember identification on GPUs. IEEE Geosci. Remote Sens. Lett. 11(5), 955–959 (2013)
Plaza, A., Plaza, J., Sanchez, S.: Parallel implementation of endmember extraction algorithms using NVIDIA graphical processing units. 2009 IEEE Int. Geosci. Remote Sens. Symp. (IGARSS 2009) 5, 208–211 (2009)
Luo, W.: Parallel implementation of N-FINDR algorithm for hyperspectral imagery on hybrid multiple-core CPU and GPU parallel platform. Proc. SPIE 8006, 80060A–80066A (2011)
Bernabe, S., Sanchez, S., Plaza, A., Lopez, S., Benediktsson, J.A., Sarmiento, R.: Hyperspectral unmixing on GPUs and multi-core processors: a comparison. IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens. 6(3), 1386–1398 (2013)
Barberis, A., Danese, G., Leporati, F., Plaza, A., Torti, E.: Real-time implementation of the vertex component analysis algorithm on GPUs. IEEE Geosci. Remote Sens. Lett. 10(2), 251–255 (2013)
Tarabalka, Y., Haavardsholm, T.V., Kasen, I., Skauli, T.: Real-time anolmaly detection in hyperspectral images using multivariate normal mixture models and GPU processing. J. Real Time Image Proc. 4(3), 287–300 (2009)
Heinz, D.C.: Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 39(3), 529–545 (2001)
Lin, C.J.: Projected gradient methods for nonnegative matrix factorization. Neural Comput. 19(10), 2756–2779 (2007)
Zhang, Y.: An alternating direction algorithm for nonnegative matrix factorization. Rice Technical Report (2010)
NVIDIA Developer Zone. cuBLAS User Guide. http://www.docs.nvidia.com/cuda/cublas/index.html (2013)
Clark, R.N., Swayze, G.A., Gallagher, A.J., King, T.V., Calvin, W.M.: The US Geological Survey, digital spectral library: version 1: 0.2 to 3.0 microns. US Geol. Surv. Open File Rep. 93(592), 1340 (1993)
Dias, J.M.B., Nascimento, J.M.P.: Hyperspectral subspace identification. IEEE Trans. Geosci. Remote Sens. 46(8), 2435–2445 (2008)
EM Photonics: CULA Programmer’s Guide. http://www.culatools.com/cula_dense_programmers_guide/ (2014)
Plaza, A.: Special issue on architectures and techniques for real-time processing of remotely sensed images. J. Real Time Image Process. 4, 191–193 (2009)
Nascimento, J.M.P., Bioucas-Dias, J.M., Rodriguez Alves, J.M., Silva, V., Plaza, A.: Parallel hyperspectral unmixing on GPUs. IEEE Geosci. Remote Sens. Lett. 11(3), 666–670 (2014)
Bernabe, S., Sanchez, S., Plaza, A., Lopez, S., Benediktsson, J.A., Sarmiento, R.: Hyperspectral unmixing on GPUs and multi-core processors: a comparison. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 6(3), 1386–1398 (2013)
Bernabe, S., Lopez, S., Plaza, A., Sarmiento, R.: GPU implementation of an automatic target detection and classification algorithm for hyperspectral image analysis. IEEE Geosci. Remote Sens. Lett. 10(2), 221–225 (2013)
Acknowledgments
Financial support for this work, provided by the National Natural Science Foundation of China (Grants Nos. 61471199, 61101194), the Jiangsu Provincial Natural Science Foundation of China (Grant No. BK2011701), the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20113219120024), the Project of China Geological Survey (Grant No. 1212011120227), the Jiangsu Province Six Top Talents project of China (Grant No. WLW-011), and the CAST Innovation Foundation (Grant No. CAST201227), is gratefully acknowledged.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Wu, Z., Liu, J., Ye, S. et al. Optimization of minimum volume constrained hyperspectral image unmixing on CPU–GPU heterogeneous platform. J Real-Time Image Proc 15, 265–277 (2018). https://doi.org/10.1007/s11554-014-0479-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11554-014-0479-x