[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Optimization of minimum volume constrained hyperspectral image unmixing on CPU–GPU heterogeneous platform

  • Original Research Paper
  • Published:
Journal of Real-Time Image Processing Aims and scope Submit manuscript

Abstract

Hyperspectral unmixing is essential for efficient hyperspectral image processing. Nonnegative matrix factorization based on minimum volume constraint (MVC-NMF) is one of the most widely used methods for unsupervised unmixing for hyperspectral image without the pure-pixel assumption. But the model of MVC-NMF is unstable, and the traditional solution based on projected gradient algorithm (PG-MVC-NMF) converges slowly with low accuracy. In this paper, a novel parallel method is proposed for minimum volume constrained hyperspectral image unmixing on CPU–GPU Heterogeneous Platform. First, a optimized unmixing model of minimum logarithmic volume regularized NMF is introduced and solved based on the second-order approximation of function and alternating direction method of multipliers (SO-MVC-NMF). Then, the parallel algorithm for optimized MVC-NMF (PO-MVC-NMF) is proposed based on the CPU–GPU heterogeneous platform, taking advantage of the parallel processing capabilities of GPUs and logic control abilities of CPUs. Experimental results based on both simulated and real hyperspectral images indicate that the proposed algorithm is more accurate and robust than the traditional PG-MVC-NMF, and the total speedup of PO-MVC-NMF compared to PG-MVC-NMF is over 50 times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Liu, X., Xia, W., Wang, B., Zhang, L.: An approach based on constrained nonnegative matrix factorization to unmix hyperspectral data. IEEE Trans. Geosci. Remote Sens. 49(2), 757–772 (2011)

    Article  Google Scholar 

  2. Sanchez, S., Ramalho, R., Sousa, L., Plaza, A.: Real-time implementation of remotely sensed hyperspectral image unmixing on GPUs. J. Real Time Image Proc. (2012). doi:10.1007/s11554-012-0269-2

    Google Scholar 

  3. Bioucas-Dias, J.M.P., Plaza, A., Dobigeon, N., Parente, M., et al.: Hyperspectral unmixing overview: geometrical, statistical, and sparse regression-based approaches. IEEE J. Sel. Topics Appl. Earth Obs Remote Sens. 5(2), 354–379 (2012)

    Article  Google Scholar 

  4. Nascimento, J.M.P., Bioucas-Dias, J.M.: Does independent component analysis play a role in unmixing hyperspectral data. IEEE Trans. Geosci. Remote Sens. 43(1), 175–187 (2005)

    Article  Google Scholar 

  5. Nascimento, J.M.P., Bioucas-Dias, J.M.: Hyperspectral unmixing algorithm via dependent component analysis. 2007 IEEE Int. Geosci. Remote Sens. Symp. 4033–4036 (2007)

  6. Nascimento, J.M.P., Bioucas-Dias, J.M.: Vertex component analysis: a fast algorithm to unmix hyperspectral data. IEEE Trans. Geosci. Remote Sens. 43(4), 898–910 (2005)

    Article  Google Scholar 

  7. Winter, M., N-FINDR: An algorithm for fast autonomous spectral endmember determination in hyperspectral data. In: SPIE Imaging Spectrometry V, pp. 266–275. SPLE Pub, San Diego, Washington (1999)

  8. Chang, C.I., Wu, C.C., Liu, W., Ouyang, Y.C.: A new growing method for simplex-based endmember extraction algorithm. IEEE Trans. Geosci. Remote Sens. 44(10), 2804–2819 (2006)

    Article  Google Scholar 

  9. Chi, C.Y., Chan, T.H., Ma, W.K.: A convex analysis based minimum-volume enclosing simplex algorithm for hyperspectral unmixing. In: IEEE International Conference in Acoustics, Speech and Signal Porcessing, ICASSP’2009. Taiwan (2009)

  10. Miao, L., Qi, H.: Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization. IEEE Trans. Geosci. Remote Sens. 45(3), 765–777 (2007)

    Article  Google Scholar 

  11. Yu, Y., Guo, S., Sun, W.: Minimum distance constrained non-negative matrix factorization for the endmember extraction of hyperspectral images. Proc. SPIE 6790, 679015 (2007)

    Article  Google Scholar 

  12. Pauca, V.P., Piper, J., Plemmons, R.J.: Nonnegative matrix factorization for spectral data analysis. Lin. Alg. Appl. 416, 29–47 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Jia, S., Qian, Y.: Constrained nonnegative matrix factorization for hyperspectral unmixing. IEEE Trans. Geosci. Remote Sens. 47(1), 161–173 (2009)

    Article  Google Scholar 

  14. Yang, Z., Zhou, G., Xie, S., Ding, S., Yang, J., Zhang, J.: Blind spectral unmixing based on sparse nonnegative matrix factorization. IEEE Trans. Image Process. 25(4), 1112–1125 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Qian, Y., Jia, S., Zhou, J., Robles-Kelly, A.: Hyperspectral unmixing via l 1/2 sparsity-constrained nonnegative matrix factorization. IEEE Trans. Geosci. Remote Sens. 49(11), 1–16 (2011)

    Article  Google Scholar 

  16. Christophe, E., Michel, J., Inglada, J.: Remote sensing processing: from multicore to gpu. IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens. 4(3), 643–652 (2011)

    Article  Google Scholar 

  17. Lee, C.A., Gasster, S.D., Plaza, A., et al.: Recent developments in high performance computing for remote sensing: a review. IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens. 4(3), 508–527 (2011)

    Article  Google Scholar 

  18. Plaza, A., Du, Q., Chang, Y.-L., King, R.L.: High performance computing for hyperspectral remote sensing. IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens. 4(3), 528–544 (2011)

    Article  Google Scholar 

  19. Sanchez, S., Ramalho, R., Sousa, L., Plaza, A.: Real-time implementation of remotely sensed hyperspectral image unmixing on GPUs. J. Real Time Image Proc. (2012). doi:10.1007/s11554-012-0269-2

    Google Scholar 

  20. Wu, X., Huang, B., Plaza, A., Li, Y., Wu, C.: Real-time implementation of the pixel purity index algorithm for endmember identification on GPUs. IEEE Geosci. Remote Sens. Lett. 11(5), 955–959 (2013)

    Article  Google Scholar 

  21. Plaza, A., Plaza, J., Sanchez, S.: Parallel implementation of endmember extraction algorithms using NVIDIA graphical processing units. 2009 IEEE Int. Geosci. Remote Sens. Symp. (IGARSS 2009) 5, 208–211 (2009)

  22. Luo, W.: Parallel implementation of N-FINDR algorithm for hyperspectral imagery on hybrid multiple-core CPU and GPU parallel platform. Proc. SPIE 8006, 80060A–80066A (2011)

    Article  Google Scholar 

  23. Bernabe, S., Sanchez, S., Plaza, A., Lopez, S., Benediktsson, J.A., Sarmiento, R.: Hyperspectral unmixing on GPUs and multi-core processors: a comparison. IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens. 6(3), 1386–1398 (2013)

    Article  Google Scholar 

  24. Barberis, A., Danese, G., Leporati, F., Plaza, A., Torti, E.: Real-time implementation of the vertex component analysis algorithm on GPUs. IEEE Geosci. Remote Sens. Lett. 10(2), 251–255 (2013)

    Article  Google Scholar 

  25. Tarabalka, Y., Haavardsholm, T.V., Kasen, I., Skauli, T.: Real-time anolmaly detection in hyperspectral images using multivariate normal mixture models and GPU processing. J. Real Time Image Proc. 4(3), 287–300 (2009)

    Article  Google Scholar 

  26. Heinz, D.C.: Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 39(3), 529–545 (2001)

    Article  Google Scholar 

  27. Lin, C.J.: Projected gradient methods for nonnegative matrix factorization. Neural Comput. 19(10), 2756–2779 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhang, Y.: An alternating direction algorithm for nonnegative matrix factorization. Rice Technical Report (2010)

  29. NVIDIA Developer Zone. cuBLAS User Guide. http://www.docs.nvidia.com/cuda/cublas/index.html (2013)

  30. Clark, R.N., Swayze, G.A., Gallagher, A.J., King, T.V., Calvin, W.M.: The US Geological Survey, digital spectral library: version 1: 0.2 to 3.0 microns. US Geol. Surv. Open File Rep. 93(592), 1340 (1993)

    Google Scholar 

  31. Dias, J.M.B., Nascimento, J.M.P.: Hyperspectral subspace identification. IEEE Trans. Geosci. Remote Sens. 46(8), 2435–2445 (2008)

    Article  Google Scholar 

  32. EM Photonics: CULA Programmer’s Guide. http://www.culatools.com/cula_dense_programmers_guide/ (2014)

  33. Plaza, A.: Special issue on architectures and techniques for real-time processing of remotely sensed images. J. Real Time Image Process. 4, 191–193 (2009)

    Article  Google Scholar 

  34. Nascimento, J.M.P., Bioucas-Dias, J.M., Rodriguez Alves, J.M., Silva, V., Plaza, A.: Parallel hyperspectral unmixing on GPUs. IEEE Geosci. Remote Sens. Lett. 11(3), 666–670 (2014)

    Article  Google Scholar 

  35. Bernabe, S., Sanchez, S., Plaza, A., Lopez, S., Benediktsson, J.A., Sarmiento, R.: Hyperspectral unmixing on GPUs and multi-core processors: a comparison. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 6(3), 1386–1398 (2013)

    Article  Google Scholar 

  36. Bernabe, S., Lopez, S., Plaza, A., Sarmiento, R.: GPU implementation of an automatic target detection and classification algorithm for hyperspectral image analysis. IEEE Geosci. Remote Sens. Lett. 10(2), 221–225 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

Financial support for this work, provided by the National Natural Science Foundation of China (Grants Nos. 61471199, 61101194), the Jiangsu Provincial Natural Science Foundation of China (Grant No. BK2011701), the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20113219120024), the Project of China Geological Survey (Grant No. 1212011120227), the Jiangsu Province Six Top Talents project of China (Grant No. WLW-011), and the CAST Innovation Foundation (Grant No. CAST201227), is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zebin Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Z., Liu, J., Ye, S. et al. Optimization of minimum volume constrained hyperspectral image unmixing on CPU–GPU heterogeneous platform. J Real-Time Image Proc 15, 265–277 (2018). https://doi.org/10.1007/s11554-014-0479-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11554-014-0479-x

Keywords