Abstract
Purpose
With X-ray radiation protection and dose management constantly gaining interest in interventional radiology, novel procedures often undergo prospective dose studies using anthropomorphic phantoms to determine expected reference organ-equivalent dose values. Due to inherent uncertainties, such as impact of exact patient positioning, generalized geometry of the phantoms, limited dosimeter positioning options, and composition of tissue-equivalent materials, these dose values might not allow for patient-specific risk assessment. Therefore, first the aim of this study is to quantify the influence of these parameters on local X-ray dose to evaluate their relevance in the assessment of patient-specific organ doses. Second, this knowledge further enables validating a simulation approach, which allows employing physiological material models and patient-specific geometries.
Methods
Phantom dosimetry experiments using MOSFET dosimeters were conducted reproducing imaging scenarios in prostatic arterial embolization (PAE). Associated organ-equivalent dose of prostate, bladder, colon, and skin was determined. Dose deviation induced by possible small displacements of the patient was reproduced by moving the X-ray source. Dose deviation induced by geometric and material differences was investigated by analyzing two different commonly used phantoms. We reconstructed the experiments using Monte Carlo (MC) simulations, a reference male geometry, and different material properties to validate simulations and experiments against each other.
Results
Overall, MC-simulated organ dose values are in accordance with the measured ones for the majority of cases. Marginal displacements of X-ray source relative to the phantoms lead to deviations of 6–135% in organ dose values, while skin dose remains relatively constant. Regarding the impact of phantom material composition, underestimation of internal organ dose values by 12–20% is prevalent in all simulated phantoms. Skin dose, however, can be estimated with low deviation of 1–8% at least for two materials.
Conclusions
Prospective reference dose studies might not extend to precise patient-specific dose assessment. Therefore, online organ dose assessment tools, based on advanced patient modeling and MC methods, are desirable.
Similar content being viewed by others
Notes
www.helmholtz-muenchen.de/en/institute-of-innovative-radiotherapy/index.html, accessed January 28, 2019.
References
Falco MD, Masala S, Stefanini M, Bagalà P, Morosetti D, Calabria E, Tonnetti A, Verona-Rinati G (2018) Effective-dose estimation in interventional radiological procedures. Radiol Phys Technol 11:149–155
Balter S, Hopewell JW, Miller DL, Wagner LK, Zelefsky MJ (2010) Fluoroscopically guided interventional procedures: a review of radiation effects on patients’ skin and hair. Radiology 254(2):326–341
Wagner LK, McNeese MD, Marx MV, Siegel EL (1999) Severe skin reactions from interventional fluoroscopy: case report and review of the literature. Radiology 213(3):773–776
Koenig TR, Wolff D, Mettler FA, Wagner LK (2001) Skin injuries from fluoroscopically guided procedures: part 1, characteristics of radiation injury. AJR Am J Roentgenol 177(1):3–11
D’Incan M, Roger H, Gabrillargues J, Mansard S, Parent S, Chazal J, Irthum B, Souteyrand P (2002) Radiation-induced temporary hair loss after endovascular embolization of the cerebral arteries: six cases. Ann Dermatol Venereol 129(5):703–706
Balter S (2006) Methods for measuring fluoroscopic skin dose. Pediatr Radiol 36(2):136–140
Mattsson S (2016) Need for individual cancer risk estimates in x-ray and nuclear medicine imaging. Radiat Prot Dosim 169(1–4):11–16
Carnevale FC, Antunes AA, da Motta Leal Filho JM, de Oliveira Cerri LM, Baroni RH, Marcelino ASZ, Freire GC, Moreira AM, Srougi M, Cerri GG (2010) Prostatic artery embolization as a primary treatment for benign prostatic hyperplasia: preliminary results in two patients. Cardiovasc Intervent Radiol 33:355–361
Bagla S, Martin CP, van Breda A, Sheridan MJ, Sterling KM, Papadouris D, Rholl KS, Smirniotopoulos JB, van Breda A (2013) Early results from a united states trial of prostatic artery embolization in the treatment of benign prostatic hyperplasia. J Vasc Interv Radiol 25(1):47–52
Christidis D, Clarebrough E, Ly V, Perera M, Woo H, Lawrentschuk N, Bolton D (2018) Prostatic artery embolization for benign prostatic obstruction: assessment of safety and efficacy. World J Urol 36:575–584
Garzón WJ, Andrade G, Dubourcq F, Abud DG, Bredow M, Khoury HJ, Kramer R (2016) Prostatic artery embolization: radiation exposure to patients and staff. J Radiol Prot 36:246–254
Laborda A, De Assis AM, Ioakeim I, Sánchez-Ballestín M, Carnevale FC, De Gregorio MA (2015) Radiodermitis after prostatic artery embolization: case report and review of the literature. Cardiovasc Intervent Radiol 38:755–759
Andrade G, Khoury HJ, Garzón WJ, Dubourcq F, Bredow M, Monsignore LM, Abud DG (2017) Radiation exposure of patients and interventional radiologists during prostatic artery embolization: a prospective single-operator study. J Vasc Interv Radiol 28(4):517–521
Tanaka M, Lacayo E, Katrivesis J, Spies J, Kim A (2017) Radiation doses in prostatic artery embolization for benign prostatic hypertrophy: A single-institution series and meta-analysis. J Vasc Interv Radiol 28(2, Supplement):S149
Gao Y, Huang Y, Zhang R, Yang Y, Zhang Q, Hou M, Wang Y (2014) Benign prostatic hyperplasia: prostatic arterial embolization versus transurethral resection of the prostate-A prospective, randomized, and controlled clinical trial. Radiology 270(3):920–928
Pisco JM, Bilhim T, Pinheiro LC, Fernandes L, Pereira J, Costa NV, Duarte M, Oliveira AG (2016) Medium- and long-term outcome of prostate artery embolization for patients with benign prostatic hyperplasia: results in 630 patients. J Vasc Interv Radiol 27(8):1115–1122
Badal A, Badano A (2009) Accelerating Monte Carlo simulations of photon transport in a voxelized geometry using a massively parallel graphics processing unit. Med Phys 36(11):4878–4880
Bert J, Perez-Ponce H, El Bitar Z, Jan S, Boursier Y, Vintache D, Bonissent A, Morel C, Brasse D, Visvikis D (2013) Geant4-based Monte Carlo simulations on GPU for medical applications. Phys Med Biol 58(16):5593–5611
Shrimpton PC, Wall BF, Fisher ES (1981) The tissue-equivalence of the Alderson Rando anthropomorphic phantom for x-rays of diagnostic qualities. Phys Med Biol 26(1):133–139
White DR (1978) Tissue substitutes in experimental radiation physics. Med Phys 5(6):467–479
Sechopoulos I, Ali ESM, Badal A, Badano A, Boone JM, Kyprianou IS, Mainegra-Hing E, McMillan KL, McNitt-Gray MF, Rogers DWO, Samei E, Turner AC (2015) Monte Carlo reference data sets for imaging research: executive summary of the report of AAPM Research Committee Task Group 195. Med Phys 42(10):5679–5691
Sempau J, Acosta E, Baro J, Fernández-Varea JM, Salvat F (1997) An algorithm for Monte Carlo simulation of coupled electron-photon transport. Nucl Instrum Methods B 132(3):377–390
Agostinelli S, Allison J, Amako K, Apostolakis J, Araujo H, Arce P, Asai M, Axen D, Banerjee S, Barrand G, Behner F, Bellagamba L, Boudreau J, Broglia L, Brunengo A, Burkhardt H, Chauvie S, Chuma J, Chytracek R, Cooperman G, Cosmo G, Degtyarenko P, Dell’Acqua A, Depaola G, Dietrich D, Enami R, Feliciello A, Ferguson C, Fesefeldt H, Folger G, Foppiano F, Forti A, Garelli S, Giani S, Giannitrapani R, Gibin D, GómezCadenas JJ, González I, Gracia Abril G, Greeniaus G, Greiner W, Grichine V, Grossheim A, Guatelli S, Gumplinger P, Hamatsu R, Hashimoto K, Hasui H, Heikkinen A, Howard A, Ivanchenko V, Johnson A, Jones FW, Kallenbach J, Kanaya N, Kawabata M, Kawabata Y, Kawaguti M, Kelner S, Kent P, Kimura A, Kodama T, Kokoulin R, Kossov M, Kurashige H, Lamanna E, Lampén T, Lara V, Lefebure V, Lei F, Liendl M, Lockman W, Longo F, Magni S, Maire M, Medernach E, Minamimoto K, Mora de Freitas P, Morita Y, Murakami K, Nagamatu M, Nartallo R, Nieminen P, Nishimura T, Ohtsubo K, Okamura M, O’Neale S, Oohata Y, Paech K, Perl J, Pfeiffer A, Pia MG, Ranjard F, Rybin A, Sadilov S, Di Salvo E, Santin G, Sasaki T, Savvas N, Sawada Y, Scherer S, Sei S, Sirotenko V, Smith D, Starkov N, Stoecker H, Sulkimo J, Takahata M, Tanaka S, Tcherniaev E, SafaiTehrani E, Tropeano M, Truscott P, Uno H, Urban L, Urban P, VerderiM Walkden A, Wander W, Weber H, Wellisch JP, Wenaus T, Williams DC, Wright D, Yamada T, Yoshida H, Zschiesche D (2003) Geant4-asimulation toolkit. Nucl Instrum Methods A 506(3):250–303
Allison J, Amako K, Apostolakis J, Arce P, Asai M, Aso T, Bagli E, Bagulya A, Banerjee S, Barrand G, Beck BR, Bogdanov AG, Brandt D, Brown JMC, Burkhardt H, Canal Ph, Cano-Ott D, Chauvie S, Cho K, Cirrone GAP, Cooperman G, Cortés-Giraldo MA, Cosmo G, Cuttone G, Depaola G, Desorgher L, Dong X, Dotti A, Elvira VD, Folger G, Francis Z, Galoyan A, Garnier L, Gayer M, Genser KL, Grichine VM, Guatelli S, Guèye P, Gumplinger P, Howard AS, Hřivnáčová I, Hwang S, Incerti S, Ivanchenko A, Ivanchenko VN, Jones FW, Jun SY, Kaitaniemi P, Karakatsanis N, Karamitros M, Kelsey M, Kimura A, Koi T, Kurashige H, Lechner A, Lee SB, Longo F, Maire M, Mancusi D, Mantero A, Mendoza E, Morgan B, Murakami K, Nikitina T, Pandola L, Paprocki P, Perl J, Petrović I, Pia MG, Pokorski W, Quesada JM, Raine M, Reis MA, Ribon A, Ristić Fira A, Romano F, Russo G, Santin G, Sasaki T, Sawkey D, Shin JI, Strakovsky II, Taborda A, Tanaka S, Tomé B, Toshito T, Tran HN, Truscott PR, Urban L, Uzhinsky V, Verbeke JM, Verderi M, Wendt BL, Wenzel H, Wright DH, Wright DM, Yamashita T, Yarba J, Yoshida H (2016) Recent developments in Geant4. Nucl Instrum Methods A 835((Supplement C)):186–225
International Commission on Radiological Protection (2009) ICRP publication 110: adult reference computation phantoms. Ann ICRP 39(2):165
Boone JM, Seibert JA (1997) An accurate method for computer-generating tungsten anode x-ray spectra from 30 to 140 kv. Med Phys 24(11):1661–1670
Perkins ST, Cullen DE, Seltzer SM (1991) Tables and graphs of electron-interaction cross-sections from 10 eV to 100 GeV derived from the LLNL Evaluated Electron Data Library (EEDL), Z= 1–100. Technical report, Lawrence Livermore National Laboratory
Perkins ST, Cullen DE, Chen MH, Rathkopf J, Scofield J, Hubbell JH (1991) Tables and graphs of atomic subshell and relaxation data derived from the LLNL Evaluated Atomic Data Library (EADL), Z= 1–100. Technical report, Lawrence Livermore National Laboratory
Cullen DE, Hubbell JH, Kissel L (1997) EPDL97: The evaluated photon data library, 97 version. Technical report, Lawrence Livermore National Laboratory
Koivisto JH, Wolff JE, Kiljunen T, Schulze D, Kortesniemi M (2015) Characterization of MOSFET dosimeters for low-dose measurements in maxillofacial anthropomorphic phantoms. J Appl Clin Med Phys 16(4):266–278
Marshall EL, Borrego D, Fudge JC, Rajderkar D, Bolch WE (2018) Organ doses in pediatric patients undergoing cardiac-centered fluoroscopically-guided interventions: comparison of three methods for computational phantom alignment. Med Phys 45(8):3926–3938
Khodadadegan Y, Zhang M, Pavlicek W, Paden RG, Chong B, Huettl EA, Schueler BA, Fetterly KA, Langer SG, Wu T (2013) Validation and initial clinical use of automatic peak skin dose localization with fluoroscopic and interventional procedures. Radiology 266(1):246–255
Golikov V, Barkovsky A, Wallstrōm E, Cederblad Å (2017) A comparative study of organ doses assessment for patients undergoing conventional x-ray examinations: phantom experiments vs. calculations. Radiat Prot Dosim 178(2):223–234
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
P. Roser is funded by the Erlangen Graduate School in Advanced Optical Technologies (SAOT). X. Zhong is now with the Siemens Healthcare GmbH. During the work on this research, X. Zhong has not been affiliated with Siemens. A. Birkhold, P. Ochs, E. Stepina, M. Kowarschik, and R. Fahrig are employees of the Siemens Healthcare GmbH. A. Maier has no conflict of interest to declare.
Human and Animals participants
This article does not contain any studies with human participants or animals performed by any of the authors.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Disclaimer The concepts and information presented in this paper are based on research and are not commercially available.
Rights and permissions
About this article
Cite this article
Roser, P., Birkhold, A., Zhong, X. et al. Pitfalls in interventional X-ray organ dose assessment—combined experimental and computational phantom study: application to prostatic artery embolization. Int J CARS 14, 1859–1869 (2019). https://doi.org/10.1007/s11548-019-02037-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11548-019-02037-6