[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Image feature evaluation in two new mammography CAD prototypes

  • Original Article
  • Published:
International Journal of Computer Assisted Radiology and Surgery Aims and scope Submit manuscript

Abstract

Purpose

Breast cancer is a common but treatable disease for adult women. Improvements in breast cancer detection and treatment have helped to lower mortality, but there is still a need for further improvements, particularly for better computer-aided diagnosis (CADx) and computer-aided detection (CADe).

Methods

Two new CAD prototypes, one CADx and one CADe prototype, were evaluated. The core modules are segmentation of lesions, feature extraction, and classification. The evaluation of microcalcifications and mass lesions is based on the currently largest publicly available Digital Database for Screening Mammography (DDSM) with digitized film mammograms and a smaller data source with high-quality mammograms from digital mammography devices. Two different image analysis approaches used by the respective CAD prototypes were examined and compared. These include the ‘machine learning’ approach and the new ‘knowledge-driven’ approach. Particular emphasis is put on a profound discussion of statistical methods with recommendations for their proper application in order to avoid common errors including feature selection, model fitting, and sampling schemes.

Results

The results show that the classification performance of the investigated CADx prototypes for microcalcifications produced a higher AUC =.777 for 44 machine learning features than for 10 knowledge-driven features (AUC =.657). A combination of both feature sets (53 features) did not substantially raise the classification performance (AUC =.771). These analyses were based on 1,347 and 1,359 ROIs, respectively. Evaluating the CADx prototype with 242 machine learning features on DDSM masses data resulted in an AUC of .862 using 1,934 ROIs. Furthermore, a CADe prototype was applied to three own databases giving information about the true positive detection rate for mass lesions. Depending on the definition of a true positive detection, it produced AUC values of .953, .818, and .954 using 12, 17, and 18 features, respectively.

Conclusion

The comparison of CAD prototypes revealed that the quality of results is highly dependent on the correct usage of statistical models, feature selection methods, and evaluation schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. WHO (ed) (2008) World health statistics. WHO Press, Geneva

  2. Levi F, Lucchini F, Negri E, Vecchia CL (2007) Continuing declines in cancer mortality in the European union. Ann Oncol 18(3):593–595, [Online]. Available: http://annonc.oxfordjournals.org/content/18/3/593.abstract

    Google Scholar 

  3. Thurfjell EL, Lernevall KA, Taube AA (1994) Benefit of independent double reading in a population-based mammography screening program. Radiology 191(1):241–244 [Online]. Available: http://radiology.rsna.org/content/191/1/241.abstract

  4. Warren RML, Duffy W (1995) Comparison of single reading with double reading of mammograms, and change in effectiveness with experience. Br J Radiol 68(813):958–962 [Online]. Available: http://bjr.birjournals.org/cgi/content/abstract/68/813/958

    Google Scholar 

  5. Harvey SC, Geller B, Oppenheimer RG, Pinet M, Riddell L, Garra B (2003) Increase in cancer detection and recall rates with independent double interpretation of screening mammography. Am J Roentgenol 180(5):1461–1467 [Online]. Available: http://www.ajronline.org/cgi/content/abstract/180/5/1461

    Google Scholar 

  6. Taylor P, Potts H (2008) Computer aids and human second reading as interventions in screening mammography: two systematic reviews to compare effects on cancer detection and recall rate. Eur J Cancer 44(6):798–807, April 2008. [Online]. Available: doi:10.1016/j.ejca.2008.02.016

  7. Elter M, Horsch A (2009) Cadx of mammographic masses and clustered microcalcifications: a review. Med Phy 36(6):2052–2068 [Online]. Available: http://link.aip.org/link/?MPH/36/2052/1

    Google Scholar 

  8. Rosado B, Menzies S, Harbauer A, Pehamberger H, Wolff K, Binder M, Kittler H (2003) Accuracy of computer diagnosis of melanoma: a quantitative meta-analysis. Arch Dermatol 139(3):361–367 [Online]. Available: http://archderm.ama-assn.org/cgi/content/abstract/139/3/361

    Google Scholar 

  9. Heath M, Bowyer K, Kopans D, Moore R, Kegelmeyer WP (2001) The digital database for screening mammography. In: Yaffe M (ed) Proceedings of the fifth international workshop on digital mammography. Medical Physics Publishing, London, pp 212–218

    Google Scholar 

  10. Elter M, Horsch A, Schöulz-Wendtland R, Sittek H, Athelogou M, Schmidt G, Wittenberg T (2007) A modern benchmark case database for computer-aided diagnosis of breast cancer. Int J Comput Assist Radiol Surg (CARS 2007) 2(S1): 514

    Google Scholar 

  11. Schönmeyer R, Athelogou M, Sittek H, Ellenberg P, Feehan O, Schmidt G, Binnig G (2011) Cognition network technology prototype of a cad system for mammography to assist radiologists by finding similar cases in a reference database. Int J Comput Assist Radiol Surg 6:127–134, doi:10.1007/s11548-010-0486-8. [Online].

  12. Athelogou M, Schmidt G, Schäpe A, Baatz M, Binnig G (2007) Cognition network technology—a novel multimodal image analysis technique for automatic identification and quantification of biological image contents. In: Shorte S, Frischknecht F (eds) Imaging cellular and molecular biological functions. Springer, pp. 407–422. [Online]. Available: http://www.springerlink.com/content/u74v217m0381420v

  13. Horsch A (2011) Biomedical image processing, 1st edn. ch. Melanoma Diagnosis. Springer, Heidelberg

  14. Elter M, Held C (2008) Semiautomatic segmentation for the computer aided diagnosis of clustered microcalcifications. In: Giger ML, Karssemeijer N (eds) Medical imaging 2008: computer-aided diagnosis 6915(1). SPIE, p 691524. [Online]. Available: http://link.aip.org/link/?PSI/6915/691524/1

  15. Elter M, Bergen T (2009) Incorporating a segmentation routine for mammographic masses into a knowledge-based cadx approach. In: Karssemeijer N, Giger ML (eds) Medical imaging 2009: computer-aided diagnosis, 7260(1). SPIE, p 726025. [Online]. Available: http://link.aip.org/link/?PSI/7260/726025/1

  16. Elter M, Held C (2010) An improved method for segmentation of mammographic masses. SPIE medical imaging 2010: computer-aided diagnosis (in press)

  17. Hu MK (1962) Visual pattern recognition by moment invariants. IEEE Trans Inf Theory IT-8: 179–187

    Google Scholar 

  18. Khotanzad A, Hong Y (1990) Invariant image recognition by zernike moments. IEEE Trans Pattern Anal Mach Intell 12: 489–497

    Article  Google Scholar 

  19. Roß T, Handels H, Busche H, Kreusch J, Wolf HH, Pöppl SJ (1995) Automatische klassifikation hochaufgelöster oberflächenprofile von hauttumoren mit neuronalen netzen. In: DAGM-Symposium pp 379–386

  20. Galloway MM (1975) Texture analysis using gray level run lengths. Comput Graphics Image Process 4(2):172–179 [Online]. Available: http://www.sciencedirect.com/science/article/B7GXF-4S26XJR-7/2/5a606d689d2f1db4a428360031fd5dcf

  21. Unser M (1986) Sum and difference histograms for texture classification. IEEE Trans Pattern Anal Mach Intell 8(1): 118–125

    Article  PubMed  CAS  Google Scholar 

  22. Haralick RM, Dinstein I, Shanmugam K (1973) Textural features for image classification. IEEE Trans Syst Man Cybern SMC-3: 610–621

    Article  Google Scholar 

  23. Laine A, Fan J (1993) Texture classification by wavelet packet signatures. IEEE Trans Pattern Anal Mach Intell 15(11): 1186–1191

    Article  Google Scholar 

  24. Chen Y, Nixon M, Thomas D (1995) Statistical geometric features for texture classification. Pattern Recognit 28(4):537–552 [Online]. Available: http://eprints.ecs.soton.ac.uk/333/

    Google Scholar 

  25. Zahn CT, Roskies RZ (1972) Fourier descriptors for plane closed curves. IEEE Trans Comput c-21(3): 269–281

    Article  Google Scholar 

  26. Kilday J, Palmieri F, Fox MD (1993) Classifying mammographic lesions using computerized image analysis. IEEE Trans Med Imaging 12(4): 664–669

    Article  PubMed  CAS  Google Scholar 

  27. R Development Core Team (2009) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, ISBN 3-900051-07-0. [Online]. Available: http://www.R-project.org

  28. Metter RLV, Beutel J, Kundel HL (eds) (February 2000) Handbook of medical imaging, physics and psychophysics, corrected ed. Bellingham, SPIE Press

  29. Hothorn T, Hornik K, Zeileis A (2006) Unbiased recursive partitioning. J Comput Graph Stat 15(3):651–674 [Online]. Available: http://pubs.amstat.org/doi/abs/10.1198/106186006X133933

    Google Scholar 

  30. Hastie T, Tibshirani R, Friedman JH (2009) The elements of statistical learning, corrected ed. Springer

  31. Bamber D (1975) The area above the ordinal dominance graph and the area below the receiver operating characteristic graph. J Math Psych 12(4):387–415 [Online]. Available: http://www.sciencedirect.com/science/article/B6WK3-4D7JNKG-8D/2/752ed837f02a9523cda7e96258f5516c

    Google Scholar 

  32. Jaeger J, Sengupta R, Ruzzo W (2003) Improved gene selection for classification of microarrays. In: Proceedings of pacific symposium on biocomputing. pp 53–64

  33. Boulesteix AL, Strobl C, Augustin T, Daumer M (2008) Evaluating microarray-based classifiers: an overview. Cancer Informat 6: 77–97

    Google Scholar 

  34. Efron B, Tibshirani RJ (1994) An introduction to the bootstrap. Chapman & Hall, New York

    Google Scholar 

  35. Wood M (2004) Statistical inference using bootstrap confidence intervals. Significance 1(4):180–182 [Online]. Available: doi:10.1111/j.1740-9713.2004.00067.x

    Google Scholar 

  36. McLachlan GJ, Chevelu J, Zhu J (2008) Correcting for selection bias via cross-validation in the classification of microarray data. IMS Collect 1:364–376 [Online]. Available: doi:10.1214/193940307000000284

    Google Scholar 

  37. Ambroise C, McLachlan GJ (2002) Selection bias in gene extraction on the basis of microarray gene-expression data. Proc Natl Acad Sci USA. 99(10):6562–6566 [Online]. Available: doi:10.1073/pnas.102102699

  38. Sing T, Sander O, Beerenwinkel N, Lengauer T (2005) ROCR: visualizing classifier performance in R. Bioinformatics 21(20):3940–3941 [Online]. Available: http://bioinformatics.oxfordjournals.org/cgi/content/abstract/21/20/3940

    Google Scholar 

  39. Pirooznia M, Yang J, Yang MQ, Deng Y (2008) A comparative study of different machine learning methods on microarray gene expression data. BMC Genomics 9(Suppl 1):S13 [Online]. Available: http://www.biomedcentral.com/1471-2164/9/S1/S13

  40. Breiman L (1996) Bagging predictors. Machine Learning 24(2):123–140 [Online]. Available: doi:10.1023/A:1018054314350

    Google Scholar 

  41. Slawski M, Daumer M, Boulesteix A-L (2008) Cma—a comprehensive bioconductor package for supervised classification with high dimensional data. BMC Bioinformatics 9(1):439 [Online]. Available: http://www.biomedcentral.com/1471-2105/9/439

  42. Dupuy A, Simon RM (2007) Critical review of published microarray studies for cancer outcome and guidelines on statistical analysis and reporting. J Natl Cancer Inst 99(2):147–157, Jan 2007. [Online]. Available: doi:10.1093/jnci/djk018

    Google Scholar 

  43. Freund Y, Schapire RE (1995) A decision-theoretic generalization of on-line learning and an application to boosting. In: EuroCOLT ’95: Proceedings of the second European conference on computational learning theory. Springer, London, pp 23–37

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Hapfelmeier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hapfelmeier, A., Horsch, A. Image feature evaluation in two new mammography CAD prototypes. Int J CARS 6, 721–735 (2011). https://doi.org/10.1007/s11548-011-0549-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11548-011-0549-5

Keywords