[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Abnormal trial-to-trial variability in P300 time-varying directed eeg network of schizophrenia

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Cognitive disturbance in identifying, processing, and responding to salient or novel stimuli are typical attributes of schizophrenia (SCH), and P300 has been proven to serve as a reliable psychosis endophenotype. The instability of neural processing across trials, i.e., trial-to-trial variability (TTV), is getting increasing attention in uncovering how the SCH “noisy” brain organizes during cognition processes. Nevertheless, the TTV in the brain network remains unrevealed, notably how it varies in different task stages. In this study, resorting to the time-varying directed electroencephalogram (EEG) network, we investigated the time-resolved TTV of the functional organizations subserving the evoking of P300. Results revealed anomalous TTV in time-varying networks across the delta, theta, alpha, beta1, and beta2 bands of SCH. The TTV of cross-band time-varying network properties can efficiently recognize SCH (accuracy: 83.39%, sensitivity: 89.22%, and specificity: 74.55%) and evaluate the psychiatric symptoms (i.e., Hamilton’s depression scale-24, r = 0.430, p = 0.022, RMSE = 4.891; Hamilton’s anxiety scale-14, r = 0.377, p = 0.048, RMSE = 4.575). Our study brings new insights into probing the time-resolved functional organization of the brain, and TTV in time-varying networks may provide a powerful tool for mining the substrates accounting for SCH and diagnostic evaluation of SCH.

Graphical abstract

Schematic view of the TTV in time-varying networks, as well as the patient’s recognition and psychiatric symptoms prediction based on the anomalous TTV of SCH. The TTV is getting increasing attention in understanding the “noise” brain of SCH, whereas a perspective in a time-varying directed network still lacking. We proposed to focus on the TTV in a time-varying directed EEG electroencephalogram (EEG) network to uncover how the brain unstably organizes during cognition processes and probe the instability of neural processing across trials during the P300 task process to find the potential mechanisms that account for the cognitive disturbance of SCH. Based on the P300 task EEG of SCHs and HCs, we revealed anomalous TTV in time-varying networks across the delta, theta, alpha, beta1, and beta2 bands of SCH. And the TTV of cross-band time-varying network properties can efficiently recognize SCH and evaluate the psychiatric symptoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Owen MJ et al (2016) Schizophrenia. Lancet 388(10039):86–97. https://doi.org/10.1016/s0140-6736(15)01121-6

    Article  PubMed  PubMed Central  Google Scholar 

  2. Charlson F et al (2019) New WHO prevalence estimates of mental disorders in conflict settings: a systematic review and meta-analysis. Lancet 394(10194):240–248. https://doi.org/10.1016/s0140-6736(19)30934-1

    Article  PubMed  PubMed Central  Google Scholar 

  3. Smyrnis N et al (2009) Larger variability of saccadic reaction times in schizophrenia patients. Psychiatry Res 168(2):129–136. https://doi.org/10.1016/j.psychres.2008.04.015

    Article  PubMed  Google Scholar 

  4. Haigh SM et al (2023) Assessing Trial-to-Trial Variability in Auditory ERPs in Autism and Schizophrenia. J Autism Dev Disord 53(12):4856–4871. https://doi.org/10.1007/s10803-022-05771-0

    Article  PubMed  Google Scholar 

  5. Kim M et al (2018) Decomposing P300 into correlates of genetic risk and current symptoms in schizophrenia: An inter-trial variability analysis. Schizophr Res 192:232–239. https://doi.org/10.1016/j.schres.2017.04.001

    Article  PubMed  Google Scholar 

  6. Park H-J, Friston K (2013) Structural and Functional Brain Networks: From Connections to Cognition. Science 342(6158):1238411. https://doi.org/10.1126/science.1238411

    Article  PubMed  CAS  Google Scholar 

  7. Avena-Koenigsberger A et al (2018) Communication dynamics in complex brain networks. Nat Rev Neurosci 19(1):17–33. https://doi.org/10.1038/nrn.2017.149

    Article  CAS  Google Scholar 

  8. Friston KJ, Frith CD (1995) Schizophrenia: a disconnection syndrome. Clin Neurosci 3(2):89–97. https://pubmed.ncbi.nlm.nih.gov/7583624/

  9. Yoon JH et al (2008) Association of dorsolateral prefrontal cortex dysfunction with disrupted coordinated brain activity in schizophrenia: relationship with impaired cognition, behavioral disorganization, and global function. Am J Psychiatry 165(8):1006–1014. https://doi.org/10.1176/appi.ajp.2008.07060945

    Article  PubMed  PubMed Central  Google Scholar 

  10. Moran LV et al (2013) Disruption of anterior insula modulation of large-scale brain networks in schizophrenia. Biol Psychiatry 74(6):467–474. https://doi.org/10.1016/j.biopsych.2013.02.029

    Article  PubMed  PubMed Central  Google Scholar 

  11. Braun U et al (2021) Brain network dynamics during working memory are modulated by dopamine and diminished in schizophrenia. Nat Commun 12(1):3478. https://doi.org/10.1038/s41467-021-23694-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Supekar K et al (2019) Dysregulated brain dynamics in a triple-network saliency model of schizophrenia and its relation to psychosis. Biol Psychiatry 85(1):60–69. https://doi.org/10.1016/j.biopsych.2018.07.020

    Article  PubMed  Google Scholar 

  13. Zhang G et al (2022) Detecting abnormal connectivity in schizophrenia via a joint directed acyclic graph estimation model. Neuroimage 260:119451. https://doi.org/10.1016/j.neuroimage.2022.119451

    Article  PubMed  Google Scholar 

  14. Bramon E et al (2005) Is the P300 wave an endophenotype for schizophrenia? A meta-analysis and a family study. Neuroimage 27(4):960–968. https://doi.org/10.1016/j.neuroimage.2005.05.022

    Article  PubMed  Google Scholar 

  15. Chun J et al (2013) Can P300 distinguish among schizophrenia, schizoaffective and bipolar I disorders? An ERP study of response inhibition. Schizophr Res 151(1–3):175–184. https://doi.org/10.1016/j.schres.2013.10.020

    Article  PubMed  CAS  Google Scholar 

  16. Núñez P et al (2022) Schizophrenia induces abnormal frequency-dependent patterns of dynamic brain network reconfiguration during an auditory oddball task. J Neural Eng 19(1):016033. https://doi.org/10.1088/1741-2552/ac514e

    Article  Google Scholar 

  17. Yi C et al (2022) A novel method for constructing EEG large-scale cortical dynamical functional network connectivity (dFNC): WTCS. IEEE Trans Cybern 52(12):12869–12881. https://doi.org/10.1109/TCYB.2021.3090770

    Article  PubMed  Google Scholar 

  18. Yi C et al (2022) Constructing time-varying directed EEG network by multivariate nonparametric dynamical granger causality. IEEE Trans Neural Syst Rehabil Eng 30:1412–1421. https://doi.org/10.1109/TNSRE.2022.3175483

    Article  PubMed  Google Scholar 

  19. Cao J et al (2022) Brain functional and effective connectivity based on electroencephalography recordings: A review. Hum Brain Mapp 43(2):860–879. https://doi.org/10.1002/hbm.25683

    Article  PubMed  Google Scholar 

  20. Polich J (2007) Updating P300: An integrative theory of P3a and P3b. Clin Neurophysiol 118(10):2128–2148. https://doi.org/10.1016/j.clinph.2007.04.019

    Article  PubMed  PubMed Central  Google Scholar 

  21. Yi C et al (2021) Constructing EEG large-scale cortical functional network connectivity based on brain atlas by S estimator. IEEE Trans Cogn Dev Syst 13(4):769–778. https://doi.org/10.1109/TCDS.2020.2991414

    Article  Google Scholar 

  22. Kappenman ES, Luck SJ (2011) The oxford handbook of event-related potential components. Oxford University Press. https://doi.org/10.1093/oxfordhb/9780195374148.001.0001

    Article  Google Scholar 

  23. Yao D (2001) A method to standardize a reference of scalp EEG recordings to a point at infinity. Physiol Meas 22(4):693–711. https://doi.org/10.1088/0967-3334/22/4/305

    Article  PubMed  CAS  Google Scholar 

  24. Wilke C et al (2008) Estimation of time-varying connectivity patterns through the use of an adaptive directed transfer function. IEEE Trans Biomed Eng 55(11):2557–2564. https://doi.org/10.1109/TBME.2008.919885

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sakamoto Y et al (1986) Akaike information criterion statistics. Dordrecht, The Netherlands: D. Reidel 81(10.5555):26853. https://doi.org/10.1080/01621459.1988.10478680

    Article  Google Scholar 

  26. Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: Uses and interpretations. Neuroimage 52(3):1059–1069. https://doi.org/10.1016/j.neuroimage.2009.10.003

    Article  PubMed  Google Scholar 

  27. Dinstein I et al (2015) Neural variability: friend or foe? Trends Cogn Sci 19(6):322–328. https://doi.org/10.1016/j.tics.2015.04.005

    Article  PubMed  Google Scholar 

  28. Li F et al (2019) Differentiation of schizophrenia by combining the spatial EEG brain network patterns of rest and task P300. IEEE Trans Neural Syst Rehabil Eng 27(4):594–602. https://doi.org/10.1109/TNSRE.2019.2900725

    Article  PubMed  Google Scholar 

  29. Lotte F, Guan C (2011) Regularizing common spatial patterns to improve BCI designs: unified theory and new algorithms. IEEE Trans Biomed Eng 58(2):355–362. https://doi.org/10.1109/TBME.2010.2082539

    Article  PubMed  Google Scholar 

  30. Chang C-C, Lin C-J (2011) LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol (TIST) 2(3):1–27. https://doi.org/10.1145/1961189.1961199

    Article  Google Scholar 

  31. Mishuhina V, Jiang X (2021) Complex common spatial patterns on time-frequency decomposed EEG for brain-computer interface. Pattern Recogn 115:107918. https://doi.org/10.1016/j.patcog.2021.107918

    Article  Google Scholar 

  32. Wong T-T (2015) Performance evaluation of classification algorithms by k-fold and leave-one-out cross validation. Pattern Recogn 48(9):2839–2846. https://doi.org/10.1016/j.patcog.2015.03.009

    Article  Google Scholar 

  33. Üstün B et al (2005) Determination of optimal support vector regression parameters by genetic algorithms and simplex optimization. Anal Chim Acta 544(1):292–305. https://doi.org/10.1016/j.aca.2004.12.024

    Article  CAS  Google Scholar 

  34. van Stralen KJ et al (2009) Diagnostic methods I: sensitivity, specificity, and other measures of accuracy. Kidney Int 75(12):1257–1263. https://doi.org/10.1038/ki.2009.92

    Article  PubMed  Google Scholar 

  35. Huppert JD et al (2001) Quality of life in schizophrenia: contributions of anxiety and depression. Schizophr Res 51(2):171–180. https://doi.org/10.1016/S0920-9964(99)00151-6

    Article  PubMed  CAS  Google Scholar 

  36. Upthegrove R et al (2016) Depression and Schizophrenia: Cause, Consequence, or Trans-diagnostic Issue? Schizophr Bull 43(2):240–244. https://doi.org/10.1093/schbul/sbw097

    Article  PubMed Central  Google Scholar 

  37. Achim AM et al (2009) How prevalent are anxiety disorders in schizophrenia? A meta-analysis and critical review on a significant association. Schizophr Bull 37(4):811–821. https://doi.org/10.1093/schbul/sbp148

    Article  PubMed  PubMed Central  Google Scholar 

  38. Hamilton M (1960) A rating scale for depression. J Neurol Neurosurg Psychiatry 23(1):56–62. https://doi.org/10.1136/jnnp.23.1.56

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Hamilton M (1959) The assessment of anxiety states by rating. Br J Med Psychol 32:50–55. https://doi.org/10.1111/j.2044-8341.1959.tb00467.x

    Article  PubMed  CAS  Google Scholar 

  40. Schölkopf B, Smola A, Müller KR (1997) Kernel principal component analysis. In: Gerstner W, Germond A, Hasler M, Nicoud JD (eds) Artificial neural networks — ICANN'97. ICANN 1997. Lecture notes in computer science. Springer, Berlin, pp 583–588. https://doi.org/10.1007/BFb0020217

  41. Li Z et al (2022) Predicting individual muscle fatigue tolerance by resting-state EEG brain network. J Neural Eng 19(4):046036. https://doi.org/10.1088/1741-2552/ac8502

    Article  Google Scholar 

  42. Yamaguchi S, Knight R (1991) Anterior and posterior association cortex contributions to the somatosensory P300. J Neurosci 11(7):2039–2054. https://doi.org/10.1523/JNEUROSCI.11-07-02039.1991

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Rolls ET et al (2008) Computational models of schizophrenia and dopamine modulation in the prefrontal cortex. Nat Rev Neurosci 9(9):696–709. https://doi.org/10.1038/nrn2462

    Article  PubMed  CAS  Google Scholar 

  44. Zhang R et al (2016) Working memory in unaffected relatives of patients with schizophrenia: a meta-analysis of functional magnetic resonance imaging studies. Schizophr Bull 42(4):1068–1077. https://doi.org/10.1093/schbul/sbv221

    Article  PubMed  PubMed Central  Google Scholar 

  45. Bush G (2011) Cingulate, frontal, and parietal cortical dysfunction in attention-deficit/hyperactivity disorder. Biol Psychiatry 69(12):1160–1167. https://doi.org/10.1016/j.biopsych.2011.01.022

    Article  PubMed  PubMed Central  Google Scholar 

  46. Nielsen JD et al (2017) Working memory modulation of frontoparietal network connectivity in first-episode schizophrenia. Cereb Cortex 27(7):3832–3841. https://doi.org/10.1093/cercor/bhx050

    Article  PubMed  Google Scholar 

  47. Jang K-I et al (2020) Comparison of frontal alpha asymmetry among schizophrenia patients, major depressive disorder patients, and healthy controls. BMC Psychiatry 20(1):586. https://doi.org/10.1186/s12888-020-02972-8

    Article  PubMed  PubMed Central  Google Scholar 

  48. Neal LB, Gable PA (2017) Regulatory control and impulsivity relate to resting frontal activity. Soc Cogn Affect Neurosci 12(9):1377–1383. https://doi.org/10.1093/scan/nsx080

    Article  PubMed  PubMed Central  Google Scholar 

  49. Frohlich J et al (2021) Consciousness among delta waves: a paradox? Brain 144(8):2257–2277. https://doi.org/10.1093/brain/awab095

    Article  PubMed  Google Scholar 

  50. Buzsáki G, Moser EI (2013) Memory, navigation and theta rhythm in the hippocampal-entorhinal system. Nat Neurosci 16(2):130–138. https://doi.org/10.1038/nn.3304

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Knyazev GG (2012) EEG delta oscillations as a correlate of basic homeostatic and motivational processes. Neurosci Biobehav Rev 36(1):677–695. https://doi.org/10.1016/j.neubiorev.2011.10.002

    Article  PubMed  Google Scholar 

  52. Keitel C et al (2014) Stimulus-driven brain oscillations in the alpha range: entrainment of intrinsic rhythms or frequency-following response? J Neurosci 34(31):10137–10140. https://doi.org/10.1523/jneurosci.1904-14.2014

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Raichle ME (2015) The brain’s default mode network. Annu Rev Neurosci 38(1):433–447. https://doi.org/10.1146/annurev-neuro-071013-014030

    Article  PubMed  CAS  Google Scholar 

  54. Andreasen NC et al (1997) Hypofrontality in schizophrenia: distributed dysfunctional circuits in neuroleptic-naïve patients. The Lancet 349(9067):1730–1734. https://doi.org/10.1016/S0140-6736(96)08258-X

    Article  CAS  Google Scholar 

  55. Thakkar KN, Ph D et al (2014) Altered brain activation during action imitation and observation in schizophrenia: a translational approach to investigating social dysfunction in schizophrenia. Am J Psychiatry 171(5):539–548. https://doi.org/10.1176/appi.ajp.2013.13040498

    Article  PubMed  PubMed Central  Google Scholar 

  56. Mondino M et al (2015) Effects of fronto-temporal transcranial direct current stimulation on auditory verbal hallucinations and resting-state functional connectivity of the left temporo-parietal junction in patients with schizophrenia. Schizophr Bull 42(2):318–326. https://doi.org/10.1093/schbul/sbv114

    Article  PubMed  PubMed Central  Google Scholar 

  57. Pfurtscheller G et al (1997) On the existence of different types of central beta rhythms below 30 Hz. Electroencephalogr Clin Neurophysiol 102(4):316–325. https://doi.org/10.1016/S0013-4694(96)96612-2

    Article  PubMed  CAS  Google Scholar 

  58. Gelastopoulos A et al (2019) Parietal low beta rhythm provides a dynamical substrate for a working memory buffer. Proc Natl Acad Sci 116(33):16613–16620. https://doi.org/10.1073/pnas.1902305116

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Cope TE et al (2017) Evidence for causal top-down frontal contributions to predictive processes in speech perception. Nat Commun 8(1):2154. https://doi.org/10.1038/s41467-017-01958-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Quentin R et al (2014) Fronto-Parietal Anatomical Connections Influence the Modulation of Conscious Visual Perception by High-Beta Frontal Oscillatory Activity. Cereb Cortex 25(8):2095–2101. https://doi.org/10.1093/cercor/bhu014

    Article  PubMed  PubMed Central  Google Scholar 

  61. Harper J et al (2016) Stimulus sequence context differentially modulates inhibition-related theta and delta band activity in a go/no-go task. Psychophysiology 53(5):712–722. https://doi.org/10.1111/psyp.12604

    Article  PubMed  PubMed Central  Google Scholar 

  62. Engel AK et al (2010) Coordination in behavior and cognition. In: Christoph von der M, William A, Phillips, Wolf S (eds) Dynamic coordination in the brain: from neurons to mind. The MIT Press, Cambridge, pp 267–299. https://doi.org/10.7551/mitpress/9780262014717.003.0018

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (#62103085), the Open Project of Henan Key Laboratory of Brain Science and Brain Computer Interface Technology (HNBBL230203), the STI 2030-Major Projects (#2022ZD0208500).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng Xu, Baoming He or Wentian Dong.

Ethics declarations

Competing interest

The authors declare no conflict of interest regarding this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, C., Li, F., Wang, J. et al. Abnormal trial-to-trial variability in P300 time-varying directed eeg network of schizophrenia. Med Biol Eng Comput 62, 3327–3341 (2024). https://doi.org/10.1007/s11517-024-03133-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-024-03133-9

Keywords

Navigation