[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

The correlation between upper body grip strength and resting-state EEG network

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Current research in the field of neuroscience primarily focuses on the analysis of electroencephalogram (EEG) activities associated with movement within the central nervous system. However, there is a dearth of studies investigating the impact of prolonged individual strength training on the resting state of the brain. Therefore, it is crucial to examine the correlation between upper body grip strength and resting-state EEG networks. In this study, coherence analysis was utilized to construct resting-state EEG networks using the available datasets. A multiple linear regression model was established to examine the correlation between the brain network properties of individuals and their maximum voluntary contraction (MVC) during gripping tasks. The model was used to predict individual MVC. The beta and gamma frequency bands showed significant correlation between RSN connectivity and MVC (p < 0.05), particularly in left hemisphere frontoparietal and fronto-occipital connectivity. RSN properties were consistently correlated with MVC in both bands, with correlation coefficients greater than 0.60 (p < 0.01). Additionally, predicted MVC positively correlated with actual MVC, with a coefficient of 0.70 and root mean square error of 5.67 (p < 0.01). The results show that the resting-state EEG network is closely related to upper body grip strength, which can indirectly reflect an individual’s muscle strength through the resting brain network.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Khalaf R, Martin S, Ellis C, Burman R, Sreedharan J, Shaw C, Leigh PN, Turner MR, Al-Chalabi A (2019) Relative preservation of triceps over biceps strength in upper limb-onset ALS: the ‘split elbow.’ J Neurol Neurosurg Psychiatr 90:730–733

    Article  Google Scholar 

  2. Jansen AE, Koop MM, Rosenfeldt AB, Alberts JL (2021) High intensity aerobic exercise improves bimanual coordination of grasping forces in Parkinson’s disease. Parkinsonism Relat Disord 87:13–19

    Article  PubMed  PubMed Central  Google Scholar 

  3. Yang Q, Zheng M, Ye Y, Li L, Yan T, Song R (2019) The step response in isometric grip force tracking: a model to characterize aging-and stroke-induced changes. IEEE Trans Neural Syst Rehabil Eng 27:673–681

    Article  PubMed  Google Scholar 

  4. Hogan PS, Chen SX, Teh WW, Chib VS (2020) Neural mechanisms underlying the effects of physical fatigue on effort-based choice. Nat Commun 11:1–15

    Article  Google Scholar 

  5. Mulderrig L, Garaycoechea JI, Tuong ZK, Millington CL, Dingler FA, Ferdinand JR, Gaul L, Tadross JA, Arends MJ, O’Rahilly S (2021) Aldehyde-driven transcriptional stress triggers an anorexic DNA damage response. Nature 600:158–163

    Article  CAS  PubMed  Google Scholar 

  6. Willems SM, Wright DJ, Day FR, Trajanoska K, Joshi PK, Morris JA, Matteini AM, Garton FC, Grarup N, Oskolkov N (2017) Large-scale GWAS identifies multiple loci for hand grip strength providing biological insights into muscular fitness. Nat Commun 8:1–12

    Article  Google Scholar 

  7. Facer-Childs ER, de Campos BM, Middleton B, Skene DJ, Bagshaw AP (2021) Temporal organisation of the brain’s intrinsic motor network: the relationship with circadian phenotype and motor performance. Neuroimage 232:117840

    Article  PubMed  Google Scholar 

  8. Zheng X, Luo J, Deng L, Li B, Li L, Huang DF, Song R (2021) Detection of functional connectivity in the brain during visuo-guided grip force tracking tasks: a functional near-infrared spectroscopy study. J Neurosci Res 99:1108–1119

    Article  CAS  PubMed  Google Scholar 

  9. Siddique U, Rahman S, Frazer AK, Pearce AJ, Howatson G, Kidgell DJ (2020) Determining the sites of neural adaptations to resistance training: a systematic review and meta-analysis. Sports Med 50:1107–1128

    Article  PubMed  Google Scholar 

  10. Lei Y, Perez MA (2017) Cortical contributions to sensory gating in the ipsilateral somatosensory cortex during voluntary activity. J Physiol 595:6203–6217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Carter AR, Astafiev SV, Lang CE, Connor LT, Rengachary J, Strube MJ, Pope DLW, Shulman GL, Corbetta M (2010) Resting interhemispheric functional magnetic resonance imaging connectivity predicts performance after stroke. Ann Neurol 67:365–375

    PubMed  PubMed Central  Google Scholar 

  12. Si Y, Jiang L, Tao Q, Chen C, Li F, Jiang Y, Zhang T, Cao X, Wan F, Yao D (2019) Predicting individual decision-making responses based on the functional connectivity of resting-state EEG. J Neural Eng 16:066025

    Article  PubMed  Google Scholar 

  13. Li F, Liu T, Wang F, Li H, Gong D, Zhang R, Jiang Y, Tian Y, Guo D, Yao D (2015) Relationships between the resting-state network and the P3: evidence from a scalp EEG study. Sci Rep 5:1–10

    Google Scholar 

  14. Spring JN, Tomescu MI, Barral J (2017) A single-bout of endurance exercise modulates EEG microstates temporal features. Brain Topogr 30:461–472

    Article  PubMed  Google Scholar 

  15. Zhang R, Yao D, Valdés-Sosa PA, Li F, Li P, Zhang T, Ma T, Li Y, Xu P (2015) Efficient resting-state EEG network facilitates motor imagery performance. J Neural Eng 12:066024

    Article  PubMed  Google Scholar 

  16. To XV, Nasrallah FA (2021) A roadmap of brain recovery in a mouse model of concussion: insights from neuroimaging. Acta Neuropathol Commun 9:1–20

    Article  Google Scholar 

  17. Cottone C, Porcaro C, Cancelli A, Olejarczyk E, Salustri C, Tecchio F (2017) Neuronal electrical ongoing activity as a signature of cortical areas. Brain Struct Funct 222:2115–2126

    Article  PubMed  Google Scholar 

  18. Nijhuis P, Keller PE, Nozaradan S, Varlet M (2021) Dynamic modulation of cortico-muscular coupling during real and imagined sensorimotor synchronisation. Neuroimage 238:118209

    Article  PubMed  Google Scholar 

  19. Bernardi NF, Van Vugt FT, Valle-Mena RR, Vahdat S, Ostry DJ (2018) Error-related persistence of motor activity in resting-state networks. J Cogn Neurosci 30:1883–1901

    Article  PubMed  Google Scholar 

  20. Zhao Z, Wu J, Fan M, Yin D, Tang C, Gong J, Xu G, Gao X, Yu Q, Yang H (2018) Altered intra-and inter-network functional coupling of resting-state networks associated with motor dysfunction in stroke. Hum Brain Mapp 39:3388–3397

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kita K, Furuya S, Osu R, Sakamoto T, Hanakawa T (2021) Aberrant cerebello-cortical connectivity in pianists with focal task-specific dystonia. Cerebral Cortex 31:4853

    Article  PubMed  Google Scholar 

  22. Solesio-Jofre E, Beets IAM, Woolley DG, Pauwels L, Chalavi S, Mantini D, Swinnen SP (2018) Age-dependent modulations of resting state connectivity following motor practice. Front Aging Neurosci 10:25

    Article  PubMed  PubMed Central  Google Scholar 

  23. Jacobacci F, Armony J L, Yeffal A, Lerner G, Amaro E, Jovicich J, Doyon J and Della-Maggiore V (2020) Rapid hippocampal plasticity supports motor sequence learning Proc Natl Acad Sci 117:23898-23903

  24. Albouy G, Fogel S, King BR, Laventure S, Benali H, Karni A, Carrier J, Robertson EM, Doyon J (2015) Maintaining vs. enhancing motor sequence memories: respective roles of striatal and hippocampal systems. NeuroImage 108:423–434

    Article  PubMed  Google Scholar 

  25. Kita K, Rokicki J, Furuya S, Sakamoto T, Hanakawa T (2018) Resting-state basal ganglia network codes a motor musical skill and its disruption from dystonia. Mov Disord 33:1472–1480

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hortobágyi T, Granacher U, Fernandez-del-Olmo M, Howatson G, Manca A, Deriu F, Taube W, Gruber M, Márquez G, Lundbye-Jensen J (2021) Functional relevance of resistance training-induced neuroplasticity in health and disease. Neurosci Biobehav Rev 122:79–91

    Article  PubMed  Google Scholar 

  27. Henry MJ, Herrmann B, Kunke D, Obleser J (2017) Aging affects the balance of neural entrainment and top-down neural modulation in the listening brain. Nat Commun 8:1–11

    Article  Google Scholar 

  28. Luo C, Li F, Li P, Yi C, Li C, Tao Q, Zhang X, Si Y, Yao D, Yin G, Song P, Wang H, Xu P (2022) A survey of brain network analysis by electroencephalographic signals. Cogn Neurodyn 16:17–41

    Article  PubMed  Google Scholar 

  29. Meyers JL, Zhang J, Chorlian DB, Pandey AK, Kamarajan C, Wang J-C, Wetherill L, Lai D, Chao M, Chan G (2021) A genome-wide association study of interhemispheric theta EEG coherence: implications for neural connectivity and alcohol use behavior. Mol Psychiatry 26:5040–5052

    Article  CAS  PubMed  Google Scholar 

  30. Li F, Jiang L, Liao Y, Si Y, Yi C, Zhang Y, Zhu X, Yang Z, Yao D, Cao Z (2021) Brain variability in dynamic resting-state networks identified by fuzzy entropy: a scalp EEG study. J Neural Eng 18:046097

    Article  Google Scholar 

  31. Mammone N, De Salvo S, Bonanno L, Ieracitano C, Marino S, Marra A, Bramanti A, Morabito FC (2018) Brain network analysis of compressive sensed high-density EEG signals in AD and MCI subjects. IEEE Trans Industr Inf 15:527–536

    Article  Google Scholar 

  32. Omid GS, Yuxiao Y, Morgan BL, Heather ED, Edward FC, Maryam MS (2018) Mood variations decoded from multi-site intracranial human brain activity. Nat Biotechnol 36:954–961

    Article  Google Scholar 

  33. Karunasingha DSK (2022) Root mean square error or mean absolute error? Use their ratio as well. Inf Sci 585:609–629

    Article  Google Scholar 

  34. Liégeois R, Li J, Kong R, Orban C, Van De Ville D, Ge T, Sabuncu MR, Yeo BTT (2019) Resting brain dynamics at different timescales capture distinct aspects of human behavior. Nat Commun 10:1–9

    Article  Google Scholar 

  35. Zhang T, Liu T, Li F, Li M, Liu D, Zhang R, He H, Li P, Gong J, Luo C (2016) Structural and functional correlates of motor imagery BCI performance: insights from the patterns of fronto-parietal attention network. Neuroimage 134:475–485

    Article  PubMed  Google Scholar 

  36. Sugata H, Yagi K, Yazawa S, Nagase Y, Tsuruta K, Ikeda T, Nojima I, Hara M, Matsushita K, Kawakami K (2020) Role of beta-band resting-state functional connectivity as a predictor of motor learning ability. Neuroimage 210:116562

    Article  PubMed  Google Scholar 

  37. Roc A, Pillette L, Mladenovic J, Benaroch C, N’Kaoua B, Jeunet C, Lotte F (2021) A review of user training methods in brain computer interfaces based on mental tasks. J Neural Eng 18:011002

    Article  Google Scholar 

  38. Monaco S, Malfatti G, Culham JC, Cattaneo L, Turella L (2020) Decoding motor imagery and action planning in the early visual cortex: overlapping but distinct neural mechanisms. Neuroimage 218:116981

    Article  PubMed  Google Scholar 

  39. Weitnauer L, Frisch S, Melie-Garcia L, Preisig M, Schroeter ML, Sajfutdinow I, Kherif F, Draganski B (2021) Mapping grip force to motor networks. NeuroImage 229:117735

    Article  PubMed  Google Scholar 

  40. DeSimone JC, Archer DB, Vaillancourt DE, Wagle Shukla A (2019) Network-level connectivity is a critical feature distinguishing dystonic tremor and essential tremor. Brain 142:1644–1659

    Article  PubMed  PubMed Central  Google Scholar 

  41. Decroix J, Borgomaneri S, Kalénine S, Avenanti A (2020) State-dependent TMS of inferior frontal and parietal cortices highlights integration of grip configuration and functional goals during action recognition. Cortex 132:51–62

    Article  PubMed  Google Scholar 

  42. Radel R, Tempest G, Denis G, Besson P, Zory R (2017) Extending the limits of force endurance: stimulation of the motor or the frontal cortex? Cortex 97:96–108

    Article  PubMed  Google Scholar 

  43. Jana S, Hannah R, Muralidharan V, Aron AR (2020) Temporal cascade of frontal, motor and muscle processes underlying human action-stopping. Elife 9:e50371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ferrari-Toniolo S, Visco-Comandini F, Papazachariadis O, Caminiti R, Battaglia-Mayer A (2015) Posterior parietal cortex encoding of dynamic hand force underlying hand–object interaction. J Neurosci 35:10899–10910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Karabanov AN, Irmen F, Madsen KH, Haagensen BN, Schulze S, Bisgaard T, Siebner HR (2019) Getting to grips with endoscopy-learning endoscopic surgical skills induces bi-hemispheric plasticity of the grasping network. Neuroimage 189:32–44

    Article  PubMed  Google Scholar 

  46. Kupferberg A, Iacoboni M, Flanagin V, Huber M, Kasparbauer A, Baumgartner T, Hasler G, Schmidt F, Borst C, Glasauer S (2018) Fronto-parietal coding of goal-directed actions performed by artificial agents. Hum Brain Mapp 39:1145–1162

    Article  PubMed  Google Scholar 

  47. Berchicci M, Menotti F, Macaluso A, Di Russo F (2013) The neurophysiology of central and peripheral fatigue during sub-maximal lower limb isometric contractions. Front Hum Neurosci 7:135–135

    Article  PubMed  PubMed Central  Google Scholar 

  48. Pirondini E, Coscia M, Minguillon J, Millan JDR, Van De Ville D, Micera S (2017) EEG topographies provide subject-specific correlates of motor control. Sci Rep 7:13229

    Article  PubMed  PubMed Central  Google Scholar 

  49. Beck MM (2021) Reorganization of functional and directed corticomuscular connectivity during precision grip from childhood to adulthood. Sci Rep 11:1–14

    Article  Google Scholar 

  50. Agrawal S, Chinnadurai V, Kaur A, Kumar P, Kaur P, Sharma R, Kumar Singh A (2019) Estimation of functional connectivity modulations during task engagement and their neurovascular underpinnings through hemodynamic reorganization method. Brain Connectivity 9:341–355

    Article  PubMed  Google Scholar 

  51. Pixa NH, Hübner L, Kutz DF, Voelcker-Rehage C (2021) A single bout of high-intensity cardiovascular exercise does not enhance motor performance and learning of a visuomotor force modulation task, but triggers ipsilateral task-related EEG activity. Int J Environ Res Public Health 18:12512

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the STI 2030—Major Projects (#2022ZD0208900, #2022ZD0211400, #2022ZD0208500), the National Natural Science Foundation of China (#62103085, #U19A2082), the Key R&D projects of Science & Technology Department of Sichuan Province (#23ZDYF0961), and the Scientific Research Foundation of Sichuan Provincial People's Hospital (#2021LY21).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fali Li or Peng Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Lu, B., Chen, C. et al. The correlation between upper body grip strength and resting-state EEG network. Med Biol Eng Comput 61, 2139–2148 (2023). https://doi.org/10.1007/s11517-023-02865-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-023-02865-4

Keywords

Navigation