[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A hierarchical semi-supervised extreme learning machine method for EEG recognition

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Feature extraction and classification is a vital part in motor imagery-based brain-computer interface (BCI) system. Traditional deep learning (DL) methods usually perform better with more labeled training samples. Unfortunately, the labeled samples are usually scarce for electroencephalography (EEG) data, while unlabeled samples are available in large quantity and easy to collect. In addition, traditional DL algorithms are notoriously time-consuming for the training process. To address these issues, a novel method of hierarchical semi-supervised extreme learning machine (HSS-ELM) is proposed in this paper and applied for motor imagery (MI) task classification. Firstly, the deep architecture of hierarchical ELM (H-ELM) approach is employed for feature learning automatically, and then these new high-level features are classified using the semi-supervised ELM (SS-ELM) algorithm which can exploit the information from both labeled and unlabeled data. Extensive experiments were conducted on some benchmark datasets and EEG datasets to evaluate the effectiveness of the proposed method. Compared with several state-of-the-art methods, including SVM, ELM, SAE, H-ELM, and SS-ELM, our HSS-ELM method can achieve better classification accuracy, a mean kappa value of 0.7945 and 0.5701 across all subjects in the training and evaluation sessions of BCI Competition IV Dataset 2a, respectively. Finally, it comes to the conclusion that the proposed method has achieved superior performance for feature extraction and classification of EEG signals.

The schematic of the proposed HSS-ELM algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wolpaw J, Wolpaw E W (2012) Brain-computer interfaces: principles and practice. OUP USA

  2. Pfurtscheller G, Neuper C (2001) Motor imagery and direct brain-computer communication. Proc IEEE 89(7):1123–1134

    Article  Google Scholar 

  3. Sanei S, Chambers J A (2013) EEG signal processing. John Wiley & Sons

  4. Samek W, Kawanabe M, Müller KR (2014) Divergence-based framework for common spatial patterns algorithms. IEEE Rev Biomed Eng 7:50–72

    Article  Google Scholar 

  5. She Q, Gan H, Ma Y et al (2016) Scale-dependent signal identification in low-dimensional subspace: motor imagery task classification. Neural Plast 7431012

  6. Thomas E, Fruitet J, Clerc M (2013) Combining ERD and ERS features to create a system-paced BCI. J Neurosci Methods 216(2):96–103

    Article  Google Scholar 

  7. Park C, Looney D, ur Rehman N et al (2013) Classification of motor imagery BCI using multivariate empirical mode decomposition. IEEE Trans Neural Syst Rehab Eng 21(1):10–22

    Article  Google Scholar 

  8. Ang KK, Chin ZY, Wang C et al (2012) Filter bank common spatial pattern algorithm on BCI competition IV datasets 2a and 2b. Front Neurosci 6:39

    Article  Google Scholar 

  9. Park C, Took CC, Mandic DP (2014) Augmented complex common spatial patterns for classification of noncircular EEG from motor imagery tasks. IEEE Trans Neural Syst Rehab Eng 22(1):1–10

    Article  Google Scholar 

  10. Djemal R, Bazyed AG, Belwafi K et al (2016) Three-class EEG-based motor imagery classification using phase-space reconstruction technique. Brain Sci 6(3):36

    Article  Google Scholar 

  11. Bhattacharyya S, Khasnobish A, Chatterjee S et al (2010) Performance analysis of LDA, QDA and KNN algorithms in left-right limb movement classification from EEG data. Proc IEEE Int Conf Syst Med Biol 126–131

  12. Übeyli ED (2009) Combined neural network model employing wavelet coefficients for EEG signals classification. Digital Signal Process 19(2):297–308

    Article  Google Scholar 

  13. Wipf D, Nagarajan S (2009) A unified Bayesian framework for MEG/EEG source imaging. NeuroImage 44(3):947–966

    Article  Google Scholar 

  14. Huang GB, Zhu QY, Siew CK (2006) Extreme learning machine: theory and applications. Neurocomputing 70(1):489–501

    Article  Google Scholar 

  15. Huang GB, Zhou H, Ding X et al (2012) Extreme learning machine for regression and multiclass classification. IEEE Trans Syst Man Cybern B (Cybernetics) 42(2):513–529

    Article  Google Scholar 

  16. Zong W, Huang GB, Chen Y (2013) Weighted extreme learning machine for imbalance learning. Neurocomputing 101:229–242

    Article  Google Scholar 

  17. Lendasse A, He Q, Miche Y et al (2014) Advances in extreme learning machines (ELM2012). Neurocomputing 128:1–3

    Article  Google Scholar 

  18. Duan L, Bao M, Miao J et al (2016) Classification based on multilayer extreme learning machine for motor imagery task from EEG signals. Procedia Comput Sci 88:176–184

    Article  Google Scholar 

  19. Ding S, Zhang N, Xu X et al (2015) Deep extreme learning machine and its application in EEG classification. Math Probl Eng 2015

  20. Peng Y, Lu BL (2016) Discriminative manifold extreme learning machine and applications to image and EEG signal classification. Neurocomputing 174:265–277

    Article  Google Scholar 

  21. Zhang Y, Jin J, Wang X et al (2016) Motor imagery EEG classification via Bayesian extreme learning machine. Proc IEEE Int Conf Inf Sci Technol (ICIST) 27–30

  22. Tang J, Deng C, Huang GB (2016) Extreme learning machine for multilayer perceptron. IEEE Trans Neural Netw Learn Syst 27(4):809–821

    Article  Google Scholar 

  23. Kasun LLC, Zhou H, Huang GB et al (2013) Representational learning with ELMs for big data. IEEE Intell Syst 28(6):31–34

    Google Scholar 

  24. Uzair M, Shafait F, Ghanem B et al (2015) Representation learning with deep extreme learning machines for efficient image set classification. arXiv preprint arXiv:1503.02445

  25. Zhou Y, Liu B, Xia S et al (2015) Semi-supervised extreme learning machine with manifold and pairwise constraints regularization. Neurocomputing 149:180–186

    Article  Google Scholar 

  26. Huang G, Song S, Gupta JND et al (2014) Semi-supervised and unsupervised extreme learning machines. IEEE Trans Cybern 44(12):2405–2417

    Article  Google Scholar 

  27. Yu W, Zhuang F, He Q et al (2015) Learning deep representations via extreme learning machines. Neurocomputing 149:308–315

    Article  Google Scholar 

  28. Gan H, Luo ZZ, Meng M et al (2016) A risk degree-based safe semi-supervised learning algorithm. Int J Mach Learn Cybern 7(1):85–94

    Article  Google Scholar 

  29. Belkin M, Niyogi P, Sindhwani V (2006) Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. J Mach Learn Res 7(Nov):2399–2434

    Google Scholar 

  30. Hinton GE, Salakhutdinov RR (2006) Reducing the dimensionality of data with neural networks. Science 313(5786):504–507

    Article  CAS  Google Scholar 

  31. Vincent P, Larochelle H, Bengio Y et al (2008) Extracting and composing robust features with denoising autoencoders. Proceedings of the 25th International Conference on Machine Learning, 1096–1103

  32. Vincent P, Larochelle H, Lajoie I et al (2010) Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J Mach Learn Res 11(Dec):3371–3408

    Google Scholar 

  33. Salakhutdinov R, Larochelle H (2010) Efficient learning of deep Boltzmann machines. Proc Int Conf Artif Intell Stat 693–700

  34. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444

    Article  CAS  Google Scholar 

  35. Blake CC, Merz CJ UCI repository of machine learning databases. Available online: http://archive.ics.uci.edu/ml/

  36. The Yale Face Database Available online: http://vision.ucsd.edu/content/yale-face-database

  37. Graz University BCI Competition IV Datasets 2a. Available online: http://www.bbci.de/competition/iv/#dataset2a

  38. Meng M, Zhu J, She Q et al (2016) Two-level feature extraction method for multi-class motor imagery EEG. Acta Automat Sin 42(12):1915–1922

    Google Scholar 

  39. Längkvist M, Karlsson L, Loutfi A (2012) Sleep stage classification using unsupervised feature learning. Adv Artif Neural Syst 2012:5

    Google Scholar 

  40. Wu W, Chen Z, Gao X et al (2015) Probabilistic common spatial patterns for multichannel EEG analysis. IEEE Trans Pattern Anal Mach Intell 37(3):639–653

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by National Nature Science Foundation under Grant (No.61201302, 61671197 and 61601162), Zhejiang Province Natural Science Foundation (LY15F010009), Guangdong Provincial Work Injury Rehabilitation Center and the University of Houston. The authors would like to acknowledge the BCI Competition IV Dataset 2a which was used to test the algorithms proposed in this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qingshan She or Yingchun Zhang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

She, Q., Hu, B., Luo, Z. et al. A hierarchical semi-supervised extreme learning machine method for EEG recognition. Med Biol Eng Comput 57, 147–157 (2019). https://doi.org/10.1007/s11517-018-1875-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-018-1875-3

Keywords

Navigation