Abstract
Previous studies showed that all the vascular parameters from both the morphological and topological parameters were affected with the altering of imaging resolutions. However, neither the sensitivity analysis of the vascular parameters at multiple resolutions nor the distinguishability estimation of vascular parameters from different data groups has been discussed. In this paper, we proposed a quantitative analysis method of vascular parameters for vascular networks of multi-resolution, by analyzing the sensitivity of vascular parameters at multiple resolutions and estimating the distinguishability of vascular parameters from different data groups. Combining the sensitivity and distinguishability, we designed a hybrid formulation to estimate the integrated performance of vascular parameters in a multi-resolution framework. Among the vascular parameters, degree of anisotropy and junction degree were two insensitive parameters that were nearly irrelevant with resolution degradation; vascular area, connectivity density, vascular length, vascular junction and segment number were five parameters that could better distinguish the vascular networks from different groups and abide by the ground truth. Vascular area, connectivity density, vascular length and segment number not only were insensitive to multi-resolution but could also better distinguish vascular networks from different groups, which provided guidance for the quantification of the vascular networks in multi-resolution frameworks.
Similar content being viewed by others
References
Arkudas A, Beier JP, Pryymachuk G, Hoereth T, Bleiziffer O, Polykandriotis E, Hess A, Gulle H, Horch RE, Kneser U (2010) Automatic quantitative micro-computed tomography evaluation of angiogenesis in an axially vascularized tissue-engineered bone construct. Tissue Eng Part C-Methods 16:1503–1514. doi:10.1089/ten.tec.2010.0016
Barber PR, Vojnovic B, Ameer-Beg SM, Hodgkiss RJ, Tozer GM, Wilson J (2003) Semi-automated software for the three-dimensional delineation of complex vascular networks. J Microsc-Oxford 211:54–62. doi:10.1046/j.1365-2818.2003.01205.x
Bidiwala SB, Mansour MS, Stengel CK, Klein SA, Carroll SM, Koenig SC, Desoky AH, Tobin GR, Maldonado C, Barker JH (1998) Quantification of the morphological features of a foil microvascular network. Med Biol Eng Comput 36:621–626. doi:10.1007/bf02524434
Bouix S, Siddiqi K, Tannenbaum A (2005) Flux driven automatic centerline extraction. Med Image Anal 9:209–221. doi:10.1016/j.media.2004.06.026
Choi IH, Ahn JH, Chung CY, Cho TJ (2000) Vascular proliferation and blood supply during distraction osteogenesis: a scanning electron microscopic observation. J Orthop Res 18:698–705. doi:10.1002/jor.1100180504
Duvall CL, Taylor WR, Weiss D, Guldberg RE (2004) Quantitative microcomputed tomography analysis of collateral vessel development after ischemic injury. Am J Physiol-Heart C 287:H302–H310. doi:10.1152/ajpheart.00928.2003
Englmeier KH, Schmid K, Hildebrand C, Bichler S, Porta M, Maurino M, Bek T (2004) Early detection of diabetes retinopathy by new algorithms for automatic recognition of vascular changes. Eur J Med Res 9:473–478
Flaaris JJ, Volden M, Haase J, Ostergaard LR (2004) Method for modelling cerebral blood vessels and their bifurcations using circular, homogeneous, generalised cylinders. Med Biol Eng Comput 42:171–177. doi:10.1007/bf02344628
Gundersen HJ, Jensen TB, Osterby R (1978) Distribution of membrane thickness determined by lineal analysis. J Microsc 113:27–43
Hachinski V, Iadecola C, Petersen RC, Breteler MM, Nyenhuis DL, Black SE, Powers WJ, DeCarli C, Merino JG, Kalaria RN, Vinters HV, Holtzman DM, Rosenberg GA, Dichgans M, Marler JR, Leblanc GG (2006) National Institute of Neurological Disorders and Stroke-Canadian Stroke Network vascular cognitive impairment harmonization standards. Stroke 37:2220–2241. doi:10.1161/01.str.0000237236.88823.47
Hamarneh G, Jassi P (2010) VascuSynth Simulating vascular trees for generating volumetric image data with ground-truth segmentation and tree analysis. Comput Med Imag Grap 34:605–616. doi:10.1016/j.compmedimag.2010.06.002
Hassouna MS, Farag AA (2005) Robust centerline extraction framework using level sets. In: Proceedings of IEEE CS conference Computer Vision and Pattern Recognition (CVPR’05) vol 1, pp 458–465
Heinzer S, Krucker T, Stampanoni M, Abela R, Meyer EP, Schuler A, Schneider P, Mueller R (2006) Hierarchical microimaging for multiscale analysis of large vascular networks. NeuroImage 32:626–636. doi:10.1016/j.neuroimage.2006.03.043
Heinzer S, Kuhn G, Krucker T, Meyer E, Ulmann-Schuler A, Stampanoni M, Gassmann M, Marti HH, Mueller R, Vogel J (2008) Novel three-dimensional analysis tool for vascular trees indicates complete micro-networks, not single capillaries, as the angiogenic endpoint in mice overexpressing human VEGF(165) in the brain. NeuroImage 39:1549–1558. doi:10.1016/j.neuroimage.2007.10.054
Huo Y, Kassab GS (2009) A scaling law of vascular volume. Biophys J 96:347–353. doi:10.1016/j.bpj.2008.09.039
Jiang G, Gu L (2005) An automatic and fast centerline extraction algorithm for virtual colonoscopy. In: Proceedings of annual international conference IEEE-engineering-in-medicine-and-biology-society, pp 5149–5152
Kannan RY, Salacinski HJ, Sales K, Butler P, Seifalian AM (2005) The roles of tissue engineering and vascularisation in the development of micro-vascular networks: a review. Biomaterials 26:1857–1875. doi:10.1016/j.biomaterials.2004.07.006
Kwon HM, Sangiorgi G, Ritman EL, Lerman A, McKenna C, Virmani R, Edwards WD, Holmes DR, Schwartz RS (1998) Adventitial vasa vasorum in balloon-injured coronary arteries—visualization and quantitation by a microscopic three-dimensional computed tomography technique. J Am Coll Cardiol 32:2072–2079. doi:10.1016/s0735-1097(98)00482-3
Li WM, Shen WQ, Gill R, Corbly A, Jones B, Belagaje R, Zhang Y, Tang SQ, Chen Y, Zhai Y, Wang GM, Wagle A, Hui K, Westmore M, Hanson J, Chen YF, Simons M, Singh J (2006) High-resolution quantitative computed tomography demonstrating selective enhancement of medium-size collaterals by placental growth factor-1 in the mouse ischemic hindlimb. Circulation 113:2445–2453. doi:10.1161/circulationaha.105.586818
Niemisto A, Dunmire V, Yli-Harja O, Zhang W, Shmulevich I (2005) Robust quantification of in vitro angiogenesis through image analysis. IEEE Trans Med Imag 24:549–553. doi:10.1109/tmi.2004.837339
Nih LR, Deroide N, Lere-Dean C, Lerouet D, Soustrat M, Levy BI, Silvestre J-S, Merkulova-Rainon T, Pocard M, Margaill I, Kubis N (2012) Neuroblast survival depends on mature vascular network formation after mouse stroke: role of endothelial and smooth muscle progenitor cell co-administration. Eur J Neurosci 35:1208–1217. doi:10.1111/j.1460-9568.2012.08041.x
Odgaard A, Gundersen HJ (1993) Quantification of connectivity in cancellous bone, with special emphasis on 3-D reconstructions. Bone 14:173–182. doi:10.1016/8756-3282(93)90245-6
Oses P, Renault M-A, Chauvel R, Leroux L, Allieres C, Seguy B, Lamaziere J-MD, Dufourcq P, Couffinhal T, Duplaa C (2009) Mapping 3-dimensional neovessel organization steps using micro-computed tomography in a murine model of hindlimb ischemia-brief report. Arterioscl Throm Vas 29:2090–2092. doi:10.1161/atvbaha.109.192732
Palagyi K, Kuba A (1998) A 3D 6-subiteration thinning algorithm for extracting medial lines. Pattern Recogn Lett 19:613–627. doi:10.1016/s0167-8655(98)00031-2
Peter R, Malinsky M, Ourednicek P, Lambert L, Jan J (2013) Novel registration-based framework for CT angiography in lower legs. Med Biol Eng Comput 51:1079–1089. doi:10.1007/s11517-013-1085-y
Pock T, Beichel R, Bischof H (2005) A novel robust tube detection filter for 3D centerline extraction. In: Proceedings of Scandinavian conference image analysis. Springer, pp 481–490
Savai R, Langheinrich AC, Schermuly RT, Pullamsetti SS, Dumitrascu R, Traupe H, Rau WS, Seeger W, Grimminger F, Banat A (2009) Evaluation of angiogenesis using micro-computed tomography in a xenograft mouse model of lung cancer. Neoplasia 11:48–56. doi:10.1593/neo.81036
Serini G, Ambrosi D, Giraudo E, Gamba A, Preziosi L, Bussolino F (2003) Modeling the early stages of vascular network assembly. EMBO J 22:1771–1779. doi:10.1093/emboj/cdg176
Stolz E, Yeniguen M, Kreisel M, Kampschulte M, Doenges S, Sedding D, Ritman EL, Gerriets T, Langheinrich AC (2011) Angioarchitectural changes in subacute cerebral venous thrombosis. A synchrotron-based micro- and nano-CT study. NeuroImage 54:1881–1886. doi:10.1016/j.neuroimage.2010.10.056
Teng T, Lefley M, Claremont D (2002) Progress towards automated diabetic ocular screening: a review of image analysis and intelligent systems for diabetic retinopathy. Med Biol Eng Comput 40:2–13. doi:10.1007/bf02347689
Traktuev DO, Prater DN, Merfeld-Clauss S, Sanjeevaiah AR, Saadatzadeh MR, Murphy M, Johnstone BH, Ingram DA, March KL (2009) Robust functional vascular network formation in vivo by cooperation of adipose progenitor and endothelial cells. Circ Res 104:1410–1420. doi:10.1161/circresaha.108.190926
Wan M, Liang ZR, Ke Q, Hong LC, Bitter I, Kaufman A (2002) Automatic centerline extraction for virtual colonoscopy. IEEE Trans Med Imag 21:1450–1460. doi:10.1109/tmi.2002.806409
Wang G, McFarland EG, Brown BP, Vannier MW (1998) GI tract unraveling with curved cross sections. IEEE Trans Med Imag 17:318–322
Wang G, Vannier MW, Skinner MW, Kalender WA, Polacin A, Ketten DR (1996) Unwrapping cochlear implants by spiral CT. IEEE Trans Bio-med Eng 43:891–900
Zhao F, Liu J, Qu X, Xu X, Chen X, Yang X, Cao F, Liang J, Tian J (2014) In vivo quantitative evaluation of vascular parameters for angiogenesis based on sparse principal component analysis and aggregated boosted trees. Phys Med Biol 59:7777–7791
Zhou Y, Toga AW (1999) Efficient skeletonization of volumetric objects. IEEE Trans Vis Comput Graph 5:196–209. doi:10.1109/2945.795212
Zhuang ZW, Gao L, Murakami M, Pearlman JD, Sackett TJ, Simons M, de Muinck ED (2006) Arteriogenesis: noninvasive quantification with multi-detector row CT angiography and three-dimensional volume rendering in rodents. Radiology 240:698–707. doi:10.1148/radiol.2403050976
Acknowledgments
This work was supported by the Program of the National Basic Research and Development Program of China (973) under Grant No. 2011CB707702, the National Natural Science Foundation of China under Grant Nos. 81090272, 81227901, 81101083, 31371006, the National Key Technology Support Program under Grant No. 2012BAI23B06, the Natural Science Basic Research Plan in Shaanxi Province of China under Grant No. 2015JZ019, the Open Research Project under Grant 20120101 from SKLMCCS and the Fundamental Research Funds for the Central Universities.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
All authors declare that they have no conflict of interest in our research.
Ethical standards
The animal protocols used in this study were approved by the Xidian University Ethics Review Board. All procedures were performed in accordance with the Xidian University Guide for the Care and Use of Laboratory Animals formulated by the National Society for Medical Research.
Rights and permissions
About this article
Cite this article
Zhao, F., Liang, J., Chen, X. et al. Quantitative analysis of vascular parameters for micro-CT imaging of vascular networks with multi-resolution. Med Biol Eng Comput 54, 511–524 (2016). https://doi.org/10.1007/s11517-015-1337-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11517-015-1337-0