Abstract
The vast majority of multifocal electroretinogram (mfERG) signal analyses to detect glaucoma study the signals’ amplitudes and latencies. The purpose of this paper is to investigate application of wavelet analysis of mfERG signals in diagnosis of glaucoma. This analysis method applies the continuous wavelet transform (CWT) to the signals, using the real Morlet wavelet. CWT coefficients resulting from the scale of maximum correlation are used as inputs to a neural network, which acts as a classifier. mfERG recordings are taken from the eyes of 47 subjects diagnosed with chronic open-angle glaucoma and from those of 24 healthy subjects. The high sensitivity in the classification (0.894) provides reliable detection of glaucomatous sectors, while the specificity achieved (0.844) reflects accurate detection of healthy sectors. The results obtained in this paper improve on the previous findings reported by the authors using the same visual stimuli and database.
Similar content being viewed by others
References
Addison PS (2005) Wavelet transforms and the ECG: a review. Physiol Meas 26:R155–R199
Altman DG, Bland JM (1994) Statistics notes: diagnostic tests 2: predictive values. Br Med J 309(102):1
Bayer AU, Erb C (2002) Short-wavelength automated perimetry, frequency doubling technology perimetry and pattern electroretinography for prediction of progressive glaucomatous standard visual field defects. Ophthalmology 109:1009–1017
Bearse MA, Sutter EE, Stamper RL (2001) Detection of glaucomatous dysfunction using a global flash multifocal electroretinogram (mERG) paradigm. In: Sawchuk A (ed) Vision science and its applications. OSA technical digest series, vol 1. Optical Society of America, Washington, DC, pp 14–17
Boquete L, Miguel-Jiménez JM, Ortega S, Rodríguez-Ascariz JM, Pérez-Rico C, Blanco R (2011) Multifocal electroretinogram diagnosis of glaucoma applying neural networks and structural pattern analysis. Expert Syst Appl 39:234–238
Chu PH, Chan HH, Brown B (2006) Glaucoma detection is facilitated by luminance modulation of the global flash multifocal electroretinogram. Invest Ophthalmol Vis Sci 47:929–937
Chu PH, Chan HH, Brown B (2007) Luminance-modulated adaptation of global flash mfERG: fellow eye losses in asymmetric glaucoma. Invest Ophthalmol Vis Sci 48:2626–2633
Delgado MF, Nguyen NT, Cox TA et al (2002) Automated perimetry: a report by the American Academy of Ophthalmology. Ophthalmology 109:2362–2374
Delprat N, Escudié B, Guillemain P, Kronland-Martinet R, Tchamitchian P, Torrésani B (1992) Asymptotic wavelet and Gabor analysis: extraction of instantaneous frequencies. IEEE Trans Inf Theory 38:644–664
Forte JD, Bui BV, Vingrys AJ (2008) Wavelet analysis reveals dynamics of rat oscillatory potentials. J Neurosci Methods 169:191–200
Fortune B, Bearse MA, Cioffi GA, Johnson CA (2002) Selective loss of an oscillatory component from temporal retinal multifocal ERG responses in glaucoma. Invest Ophthalmol Vis Sci 43:2638–2647
Frishman LJ, Saszik S, Harwerth RS et al (2000) Effects of experimental glaucoma in macaques on the multifocal ERG: multifocal ERG in laser-induced glaucoma. Doc Ophthalmol Adv Ophthalmol 100:231–251
Graham SL, Klistorner AI, Grigg JR, Billson FA (2000) Objective VEP perimetry in glaucoma: asymmetry analysis to identify early deficits. J Glaucoma 9:10–19
Harwerth RS, Crawford ML, Frishman LJ, Viswanathan S, Smith EL, Carter-Dawson L (2002) Visual field defects and neural losses from experimental glaucoma. Prog Retin Eye Res 21:91–125
Ho WC, Wong OY, Chan YC, Wong SW, Kee CS, Chan HH (2012) Sign-dependent changes in retinal electrical activity with positive and negative defocus in the human eye. Vis Res 52:47–53
Holder GE (2001) Pattern electroretinography (PERG) and an integrated approach to visual pathway diagnosis. Prog Retin Eye Res 20:531–561
Hood DC, Greenstein VC, Holopigian K et al (2000) An attempt to detect glaucomatous damage to the inner retina with the multifocal ERG. Invest Ophthalmol Vis Sci 41:1570–1579
Hood DC, Odel JG, Chen CS, Winn BJ (2003) The multifocal electroretinogram (ERG): applications and limitations in neuro-ophthalmology. J Neuroophthalmol 23:225–235
Hood DC, Zhang X (2000) Multifocal ERG and VEP responses and visual fields: comparing disease-related changes. Doc Ophthalmol 100:115–137
Hori N, Komori S, Yamada H, Sawada A, Nomura Y, Mochizuki K, Yamamoto T (2012) Assessment of macular function of glaucomatous eyes by multifocal electroretinograms. Doc Ophthalmol Adv Ophthalmol 125:235–247
Kook MS, Sung K, Kim S, Park R, Wang W (2001) Study of retinal nerve fiber layer thickness in eyes with high tension glaucoma and hemifield defect. Br J Ophthalmol 85:1167–1170
Kumar R, Indrayan A (2011) Receiver operating characteristic (ROC) curve for medical researchers. Indian Pediatr 48:277–281
Ledolter AA, Kramer SA, Todorova MG, Schötzau A, Palmowski-Wolf AM (2013) The effect of filtering on the two-global-flash mfERG: identifying the optimal range of frequency for detecting glaucomatous retinal dysfunction. Doc Ophthalmol 126:117–123
Luo X, Patel NB, Harwerth RS, Frishman LJ (2011) Loss of the low-frequency component of the global-flash multifocal electroretinogram in primate eyes with experimental glaucoma. Invest Ophthalmol Vis Sci 52:3792–3804
Medeiros FA, Zangwill LM, Bowd C, Weinreb RN (2004) Comparison of the Gdx VCC scanning laser polarimeter, HRT II confocal scanning laser ophthalmoscope, and stratus OCT optical coherence tomograph for the detection of glaucoma. Arch Ophthalmol 122:827–837
Miguel-Jiménez JM, Boquete L, Ortega S, Rodríguez-Ascariz JM, Blanco R (2010) Glaucoma detection by wavelet-based analysis of the global flash multifocal electroretinogram. Med Eng Phys 32:617–622
Miguel-Jiménez JM, Ortega S, Boquete L, Rodríguez-Ascariz JM, Blanco R (2011) Multifocal ERG wavelet packet decomposition applied to glaucoma diagnosis. Biomed Eng Online 10:37
Palmowski-Wolfe AM, Todorova MG, Orgül S (2011) Multifocal oscillatory potentials in the ‘two global flash’ mfERG in high and normal tension primary open-angle glaucoma. J Clin Exp Ophthalmol 2:167. doi:10.4172/2155-9570.1000167
Rangaswamy NV, Hood DC, Frishman LJ (2003) Regional variations in local contributions to the primate photopic flash ERG: revealed using the slow-sequence mfERG. Invest Ophthalmol Vis Sci 44:3233–3247
Sainani K (2010) The importance of accounting for correlated observations. PM & R J Inj Funct Rehabil 2(9):858–861. doi:10.1016/j.pmrj.2010.07.482
Shimada Y, Li Y, Bearse MA, Sutter EE, Fung W (2001) Assessment of early retinal changes in diabetes using a new multifocal ERG protocol. Br J Ophthalmol 85:414–419
Sutter EE, Tran D (1992) The field topography of ERG components in man. I. The photopic luminance response. Vis Res 32:433–446
Sutter EE, Bearse MA (1999) The optic nerve head component of the human ERG. Vis Res 39:419–436
Todorova MG, Palmowski-Wolfe AM (2011) MfERG responses to long-duration white stimuli in glaucoma patients. Doc Ophthalmol Adv Ophthalmol 122:87–97
Wu LL, Suzuki Y, Kunimatsu S, Araie M, Iwase A, Tomita G (2001) Frequency doubling technology and confocal scanning ophthalmoscopic optic disc analysis in open-angle glaucoma with hemifield defect. J Glaucoma 10:256–260
Wu Y, Wang H, Zhang B, Du KL (2012) Using radial basis function networks for function approximation and classification. ISRN Appl Math 2012:324194. doi:10.5402/2012/324194
Acknowledgments
This research has been partially supported by the Ministerio de Ciencia e Innovación (Spain) under the program entitled “Advanced Analysis of Multifocal ERG and Visual-Evoked Potentials Applied to Diagnosis of Optic Neuropathies,” reference number TEC2011–26066, and by FIS PI11/00533 and RETICS RD12/0034/0006 Granted to R. Blanco.
Conflict of interest
The authors claim no conflicts of interest.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Miguel-Jiménez, J.M., Blanco, R., De-Santiago, L. et al. Continuous-wavelet-transform analysis of the multifocal ERG waveform in glaucoma diagnosis. Med Biol Eng Comput 53, 771–780 (2015). https://doi.org/10.1007/s11517-015-1287-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11517-015-1287-6