[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Arterial reservoir-excess pressure and ventricular work

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

This study is based on the hypothesis that the pressure within the arterial network can be usefully decomposed as the sum of a reservoir pressure and an excess pressure. The reservoir pressure waveform is defined to be the same in each vessel but delayed by the wave travel time from the root of the aorta. Using calculus of variations and mass conservation, which relates the flow and rates of change of pressure in the vessels, we show that the reservoir pressure waveform minimises the ventricular hydraulic work for any physiologically or clinically reasonable ejection waveform and arterial properties, i.e. vessel compliances and terminal resistances. We conclude that the excess pressure determines the excess work done by the ventricle, which may have clinically important implications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aguado-Sierra J, Alastruey J, Wang J-J, Hadjiloizou N, Davies J, Parker KH (2007) Separation of the reservoir and wave pressure and velocity from measurements at an arbitrary location in arteries. J Eng Med (Proc Inst Mech Eng Part H) 222:403−416. ISSN: 0954-4119

    Article  Google Scholar 

  2. Alastruey J, Khir AW, Matthys KS, Segers P, Sherwin SJ, Verdonck PR, Parker KH, Peiró J (2011) Pulse wave propagation in a model human arterial network: assessment of 1-D visco-elastic simulations against in vitro measurements. J Biomech 44:2250–2258. ISSN: 0021-9290

    Article  PubMed  Google Scholar 

  3. Alastruey J (2010) On the mechanics underlying the reservoir-excess separation in systemic arteries and their implications for pulse wave analysis. Cardiovasc Eng 10:176–189

    Article  PubMed  Google Scholar 

  4. Alastruey J, Parker KH, Peiró J, Sherwin SJ (2009) Analysing the pattern of pulse waves in the arterial networks: a time-domain study. J Eng Math 64:331–351

    Article  Google Scholar 

  5. Caldini P, Permutt S, Waddell JA, Riley RL (1974) Effect of epinephrine on pressure, flow, and volume relationships in the systemic circulation of dogs. Circ Res 34:606–623

    PubMed  CAS  Google Scholar 

  6. Davies JE, Hadjiloizou N, Leibovich D, Malaweera A, Alastruey J, Whinnett ZI, Manisty CH, Francis DP, Aguado-Sierra J, Foale RA, Malik IS, Parker KH, Mayet J, Hughes AD (2007) Importance of the aortic reservoir in determining the shape of the arterial pressure waveform: the forgotten lessons of Frank. Artery Res 1:40–45

    Article  Google Scholar 

  7. Davies JE, Lacy PS, Cruickshank K, Stanton A, Collier D, Thurston H, Williams B, Parker KH, Thom SM, Hughes AD (2010) Excess pressure is higher in atenolol-treated individuals and independently predicts cardiovascular events in the CAFE substudy of ASCOT. Eur Heart J 31 (Abstract Supplement):902

  8. Formaggia L, Quarteroni A, Veneziani A (eds) (2009) Cardiovascular mathematics: modeling and simulation of the circulatory system. Springer-Verlag, Milan. ISBN: 978-88-470-1151-9

  9. Hale J, Verduyn Lunel SM (1933) Introduction to functional differential equations. Applied Mathematical Sciences, vol 99. Springer-Verlag, New York. ISBN: 0-387-94076-6

  10. Huberts W, Bosboom EMH, Planken RN, Tordoir JHM, van de Vosse FN (2009) Patient-specific computational modeling to improve the clinical outcome of vascular access creation. In: Tordoir J (ed).EVC textbook: vascular access, Edizioni Minerva Medica. ISBN 10: 88-7711-640-4

  11. Karniadakis G, Sherwin SJ (2005) Spectral/hp element methods for computational fluid dynamics. Oxford University Press, Oxford. ISBN: 9780198528692

    Book  Google Scholar 

  12. Parker KH, Jones CJH (1990) Forward and backward running waves in the arteries: analysis using the method of characteristics. J Biomech Eng 112:322–326

    Article  PubMed  CAS  Google Scholar 

  13. Parker KH (2009) An introduction to wave intensity analysis. Med Biol Eng Comput 47:175–188

    Article  PubMed  Google Scholar 

  14. Richard J-P (2003) Time-delay systems: an overview of some recent advances and open problems. Automatica 39:1667–1694

    Article  Google Scholar 

  15. Reymond P, Merenda F, Peren F, Rüfenacht D, Stergiopulos N (2009) Validation of a one-dimensional model of the systemic arterial tree. Am J Physiol Heart Circ Physiol 297:H208–H222

    Article  PubMed  CAS  Google Scholar 

  16. Taylor CA (2004) Blood flow. In: Stein E, De Borst R, Hughes TJR (eds). Encyclopedia of computational mechanics. Wiley, UK. ISBN: 9780470846995

  17. Tyberg JV, Davies JE, Wang Z, Whitelaw WA, Flewitt JA, Shrive NG, Francis DP, Hughes AD, Parker KH, Wang J-J (2009) Wave intensity analysis and the development of the reservoir-wave approach. Med Biol Eng Comput 47:221–232

    Article  PubMed  Google Scholar 

  18. Wang JJ, O’Brien AB, Shrive NG, Parker KH, Tyberg JV (2003) Time-domain representation of ventricular-arterial coupling as a windkessel and wave system. Am J Physiol Heart Circ Physiol 284:H1358–H1368

    PubMed  CAS  Google Scholar 

  19. Wang JJ, Flewitt JA, Shrive NG, Parker KH, Tyberg JV (2006) Systemic venous circulation. Waves propagating on a windkessel: relation of arterial and venous windkessels to systemic vascular resistance. Am J Physiol Heart Circ Physiol 290:H154–H162

    Article  PubMed  CAS  Google Scholar 

  20. Yamaguchi T (2000) Clinical application of computational mechanics to the cardiovascualr system. Springer-Verlag, Tokyo. ISBN 4-431-70288-1

    Google Scholar 

Download references

Acknowledgements

J.A. would like to thank the British Heart Foundation for funding in the form of an Intermediate Basic Science Research Fellowship (FS/09/030/27812).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kim H. Parker.

Electronic supplementary material

Below is the link to the electronic supplementary material.

PDF (228 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parker, K.H., Alastruey, J. & Stan, GB. Arterial reservoir-excess pressure and ventricular work. Med Biol Eng Comput 50, 419–424 (2012). https://doi.org/10.1007/s11517-012-0872-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-012-0872-1

Keywords

Navigation