[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Characterisation of the iterative integral parameter identification method

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Parameter identification methods are used to find optimal parameter values to fit models to measured data. The single integral method was defined as a simple and robust parameter identification method. However, the method did not necessarily converge to optimum parameter values. Thus, the iterative integral method (IIM) was developed. IIM will be compared to a proprietary nonlinear-least-squares-based Levenberg–Marquardt parameter identification algorithm using a range of reasonable starting values. Performance is assessed by the rate and accuracy of convergence for an exemplar two parameters insulin pharmacokinetic model, where true values are known a priori. IIM successfully converged to within 1% of the true values in all cases with a median time of 1.23 s (IQR 0.82–1.55 s; range 0.61–3.91 s). The nonlinear-least-squares method failed to converge in 22% of the cases and had a median (successful) convergence time of 3.29 s (IQR 2.04–4.89 s; range 0.42–44.9 s). IIM is a stable and relatively quick parameter identification method that can be applied in a broad variety of model configurations. In contrast to most established methods, IIM is not susceptible to local minima and is thus, starting point and operator independent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Audoly S, Bellu G, D’Angio L, Saccomani MP, Cobelli C (2001) Global identifiability of nonlinear models of biological systems. IEEE Trans Biomed Eng 48(1):55–65

    Article  PubMed  CAS  Google Scholar 

  2. Bergman RN, Ider YZ, Bowden CR, Cobelli C (1979) Quantitative estimation of insulin sensitivity. Am J Physiol 236(6):E667–E677

    PubMed  CAS  Google Scholar 

  3. Carson ER, Cobelli C (2001) Modelling methodology for physiology and medicine. Academic Press, San Diego

    Google Scholar 

  4. Chase JG, Hann CE, Jackson M, Lin J, Lotz T, Wong XW, Shaw GM (2006) Integral-based filtering of continuous glucose sensor measurements for glycaemic control in critical care. Comput Methods Programs Biomed 82(3):238–247

    Article  PubMed  Google Scholar 

  5. Docherty PD, Chase JG, Lotz T, Hann CE, Shaw GM, Berkeley JE, Mann JI, McAuley KA (2009) DISTq: an iterative analysis of glucose data for low-cost real-time and accurate estimation of insulin sensitivity. Open Med Inform J 3:65–76

    Article  PubMed  Google Scholar 

  6. Docherty PD, Chase JG, Hann CE, Lotz TF, Lin J, McAuley KA, Shaw GM (2010) The identification of insulin saturation effects during the dynamic insulin sensitivity test. Open Med Inform J 4:141–148

    PubMed  Google Scholar 

  7. Docherty P, Chase JG, Lotz T, Desaive T (2011) A graphical method for practical and informative identifiability analyses of physiological models: a case study of insulin kinetics and sensitivity. Biomedical Eng Online 10(1):39

    Article  Google Scholar 

  8. Hann CE, Chase JG, Lin J, Lotz T, Doran CV, Shaw GM (2005) Integral-based parameter identification for long-term dynamic verification of a glucose-insulin system model. Comput Methods Programs Biomed 77(3):259–270

    Article  PubMed  Google Scholar 

  9. Kim C, Kim SB (2007) Modelling contaminant transport in a three-phase groundwater system with the Freundlich-type retardation factor. Environ Technol 28(2):205–216

    Article  PubMed  CAS  Google Scholar 

  10. Le Compte A, Chase JG, Russell G, Lynn A, Hann C, Shaw G, Wong X-W, Blakemore A, Lin J (2011) Modeling the glucose regulatory system in extreme preterm infants. Comput Methods Programs Biomed 102(3):253–266

    Article  PubMed  Google Scholar 

  11. Levenberg K (1944) A method for the solution of certain non-linear problems in least squares. Q Appl Math 2:164–168

    Google Scholar 

  12. Lotz T, Chase J, McAuley K, Lee D, Lin J, Hann C, Mann JI (2006) Transient and steady state euglycemic clamp validation of a model for glycemic control and insulin sensitivity testing. Diabetes Technol Ther 8(3):338–346

    Article  PubMed  CAS  Google Scholar 

  13. Lotz T, Chase JG, McAuley KA, Shaw GM, Wong J, Lin J, Le Compte AJ, Hann CE, Mann JI (2008) Monte Carlo analysis of a new model-based method for insulin sensitivity testing. Comput Methods Programs Biomed 89(3):215–255

    Article  PubMed  Google Scholar 

  14. Lotz TF, Chase JG, McAuley KA, Shaw GM, Docherty PD, Berkeley JE, Williams SM, Hann CE, Mann JI (2010) Design and clinical pilot testing of the model based Dynamic Insulin Sensitivity and Secretion Test (DISST). J Diabetes Sci Technol 4(6):1195–1201

    Google Scholar 

  15. Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters. SIAM J Appl Math 11(2):431–441

    Article  Google Scholar 

  16. McAuley KA, Berkeley JE, Docherty PD, Lotz TF, Te Morenga LA, Shaw GM, Williams SM, Chase JG, Mann JI (2011) The dynamic insulin sensitivity and secretion test—a novel measure of insulin sensitivity. Metab Clin Exp 60(12):1748–1756

    Article  PubMed  CAS  Google Scholar 

  17. Ritt JF (1950) Differential algebra. Am Math Soc

  18. Wong X, Chase JG, Shaw GM, Hann C, Lotz T, Lin J, Singh-Levett I, Hollingsworth L, Wong O, Andreassen S (2006) Model predictive glycaemic regulation in critical illness using insulin and nutrition input: a pilot study. Med Eng Phys 28(7):665–681

    Google Scholar 

  19. Youssef IK, El-Arabawy HA (2007) Picard iteration algorithm combined with Gauss–Seidel technique for initial value problems. Appl Math Comp 190(1):345–355

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul D. Docherty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Docherty, P.D., Chase, J.G. & David, T. Characterisation of the iterative integral parameter identification method. Med Biol Eng Comput 50, 127–134 (2012). https://doi.org/10.1007/s11517-011-0851-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-011-0851-y

Keywords

Navigation