[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Synergistic effects of local temperature enhancements on cellular responses in the context of high-intensity, ultrashort electric pulses

  • Technical Note
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Results of self-consistent analyses of cells show the possibility of temperature increases at membranes in response to a single nanosecond, high-voltage pulse, at least over small sections of the membrane. Molecular Dynamics simulations indicate that such a temperature increase could facilitate poration, which is one example of a bio-process at the plasma membrane. Our study thus suggests that the use of repetitive high-intensity voltage pulses could open up possibilities for a host of synergistic bio-responses involving both thermal and electrically driven phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Bagci EZ, Vodovotz Y, Billiar TR, Ermentrout GB, Bahar I (2006) Bistability in apoptosis: roles of Bax, Bcl-2, and mitochondrial permeability transition pores. Biophys J 90:1546–1559

    Article  PubMed  CAS  Google Scholar 

  2. Beebe SJ, Blackmore PF, White J, Joshi RP, Schoenbach KH (2004) Nanosecond pulsed electric fields modulate cell function through intracellular signal transduction mechanisms. Physiol Meas 25:1077–1093

    Article  PubMed  Google Scholar 

  3. Berendsen HJC, van der Spoel D, van Drumen R (1995) Gromacs: a message-passing parallel molecular dynamics implementation. Comput Phys Commun 91:43–56

    Article  CAS  Google Scholar 

  4. Chen C, Smye SW, Robinson MP, Evans JA (2006) Membrane electroporation theories: a review. Med Biol Eng Comput 44:5–14

    Article  PubMed  CAS  Google Scholar 

  5. Corovic S, Zupanic A, Kranjc S, Al Sakere B, Leroy-Willig A, Mir LM, Miklavcic D (2010) The influence of skeletal muscle anisotropy on electroporation: in vivo study and numerical modeling. Med Biol Eng Comput 48:637–648

    Article  PubMed  Google Scholar 

  6. Croce RP, De Vita A, Pierro V, Pinto IM (2010) A thermal model for pulsed EM field exposure effects in cells at nonthermal levels. IEEE Trans Plasma Sci 38:149–155

    Article  CAS  Google Scholar 

  7. Davio SR, Low PS (1982) Characterization of the calorimetric C-transition of the human erythrocyte membrane. Biochemistry 21:3575–3582

    Article  Google Scholar 

  8. Hojman P, Zibert J, Gissel H, Eriksen J, Gehl J (2007) Gene expression profiles in skeletal muscle after gene electrotransfer. BMC Mol Biol 8:56

    Article  PubMed  Google Scholar 

  9. Ivanov IT (1999) Investigation of surface and shape changes accompanying the membrane alteration responsible for the heat-induced lysis of human erythrocytes. Colloids Surfaces B 13:311–323

    Article  CAS  Google Scholar 

  10. Joshi RP, Schoenbach KH (2010) Bioelectric effects of intense, ultrashort electric pulses. Crit Rev Bio-Med Eng 38:255–304

    CAS  Google Scholar 

  11. Joshi RP, Hu Q, Schoenbach KH, Beebe SJ (2005) Simulations of transient membrane behavior in cells subjected to a high-intensity ultrashort electric pulse. Phys Rev E 71:031914/1–9

    Google Scholar 

  12. Joshi RP, Mishra A, Song J, Pakhomov AP, Schoenbach KH (2008) Simulation studies of ultrashort, high-intensity electric pulse induced action potential block in whole-animal nerves. IEEE Trans Biomed Eng 55:1391–1398

    Article  PubMed  Google Scholar 

  13. Kotnik T, Miklavcic D (2006) Theoretical evaluation of voltage inducement on internal membranes of biological cells exposed to electric field. Biophys J 90:480–491

    Article  PubMed  CAS  Google Scholar 

  14. Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri S, Wang X (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91:479–489

    Article  PubMed  CAS  Google Scholar 

  15. Lindahl E, Hess B, van der Spoel D (2001) A package for molecular simulation and trajectory analysis. J Mol Model 7:306–317

    CAS  Google Scholar 

  16. Marzo I, Brenner C, Zamzami N, Jürgensmeier JM, Susin SA, Vieira HLA, Prévost MC, Xie Z, Matsuyama S, Reed JC, Kroemer G (1998) Bax and adenine nucleotide translocator cooperate in the mitochondrial control of apoptosis. Science 281:2027–2031

    Article  PubMed  CAS  Google Scholar 

  17. Mir LM, Orlowski S, Belehradek J Jr, Teissie J, Rols MP, Sersa G, Miklavcic D, Gilbert R, Heller R (1995) Biomedical applications of electric pulses with special emphasis on antitumor electrochemotherapy. Bioelectrochem Bioenerg 38:203–207

    Article  CAS  Google Scholar 

  18. Narita M, Shimizu S, Ito T, Chittenden T, Lutz RJ, Matsuda H, Tsujimoto Y (1998) Bax interacts with the permeability transition pore to induce permeability transition and cytochrome c release in isolated mitochondria. Proc Natl Acad Sci USA 95:14681–14686

    Article  PubMed  CAS  Google Scholar 

  19. Neu JC, Krassowska W (2006) Singular perturbation analysis of the pore creation transient. Phys Rev E 74:031917/1–9

    Google Scholar 

  20. Neumann E, Sowers AE, Jordan CA (1989) Electroporation and electrofusion in cell biology. Plenum Press, New York, NY

    Google Scholar 

  21. Neumann E, Kakorin S, Toensig K (1999) The effect of resting transmembrane voltage on cell electropermeabilization: a numerical analysis. Bioelectrochem Bioenerg 48:3–16

    Article  PubMed  CAS  Google Scholar 

  22. Nijhuis EHA, Poot AA, Feijen J, Vermes I (2006) Induction of apoptosis by heat and γ-radiation in a human lymphoid cell line; role of mitochondrial changes and caspase activation. Int J Hyperth 22:687–698

    Article  CAS  Google Scholar 

  23. Nuccitelli R, Pliquett U, Chen X, Ford W, Swanson RJ, Beebe SJ, Kolb JF, Schoenbach KH (2006) Nanosecond pulsed electric fields cause melanomas to self-destruct. Biochem Biophys Res Commun 343:351–360

    Article  PubMed  CAS  Google Scholar 

  24. Nuccitelli R, Chen X, Pakhomov AG, Baldwin WH, Sheikh S, Pomicter JL, Ren W, Osgood C, Swanson RJ, Kolb JF, Beebe SJ, Schoenbach KH (2009) A new pulsed electric field therapy for melanoma disrupts the tumor’s blood supply and causes complete remission without recurrence. Int J Cancer 125:438–445

    Article  PubMed  CAS  Google Scholar 

  25. Peter ME, Krammer PH (2003) The CD95 DISC and beyond. Cell Death Differ 10:26–35

    Article  PubMed  CAS  Google Scholar 

  26. Pliquett U (2003) Joule heating during solid tissue electroporation. Med Biol Eng Comput 41:215–219

    Article  PubMed  CAS  Google Scholar 

  27. Schoenbach KH, Beebe SJ, Buescher ES (2001) Intracellular effect of ultrashort electrical pulses. Bioelectromagnetics 22:440–448

    Article  PubMed  CAS  Google Scholar 

  28. Schoenbach KH, Joshi RP, Kolb J, Chen N, Stacey M, Blackmore P, Buescher ES, Beebe SJ (2004) Ultrashort electrical pulses open a new gateway into biological cells. Proc IEEE 92:1122–1137

    Article  CAS  Google Scholar 

  29. Schoenbach KH, Hargrave B, Joshi RP, Kolb JF, Nuccitelli R, Osgood C, Pakhomov AP, Stacey M, Swanson RJ, White J, Xiao S, Zhang J, Beebe SJ, Blackmore PF, Buescher ES (2007) Bioelectric effects of intense nanosecond pulses. IEEE Trans Dielectr Electr Insul 14:1088–1119

    Article  CAS  Google Scholar 

  30. Swillens S, Dupont G, Combettes L, Champeil P (1999) From calcium blips to calcium puffs: theoretical analysis of the requirements for interchannel communication. Proc Natl Acad Sci 96:13750–13755

    Article  PubMed  CAS  Google Scholar 

  31. Teissie J, Eynard N, Gabriel B, Rols MP (1999) Electropermeabilization of cell membranes. Adv Drug Deliv Rev 35:3–19

    Article  PubMed  CAS  Google Scholar 

  32. Vernier PT, Sun Y, Marcu L, Salemi S, Craft CM, Gundersen MA (2003) Calcium bursts induced by nanosecond electric pulses. Biochem Biophys Res Commun 310:286–295

    Article  PubMed  CAS  Google Scholar 

  33. Weaver JC, Chizmadzhev Y (1996) Theory of electroporation: a review. Bioelectrochem Bioenerg 41:135–160

    Article  CAS  Google Scholar 

  34. Winterhalter M, Helfrich W (1987) Effect of voltage on pores in membranes. Phys Rev A 36:5874–5876

    Article  PubMed  Google Scholar 

  35. Xiao S, Altunc S, Kumar P, Baum CE, Schoenbach KH (2010) A reflector antenna for focusing subnanosecond pulses in the near field. IEEE Trans Antenna Wirel Propag Lett 9:12–15

    Article  Google Scholar 

  36. Zhang J, Blackmore PF, Hargrave BY, Xiao S, Beebe JS, Schoenbach KH (2008) Nanosecond pulse electric field (nanopulse): a novel non-ligand agonist for platelet activation. Arch Biochem Biophys 471:240–248

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank P. T. Vernier (Univ. S. California) for useful discussions. Partial support from Old Dominion University is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. P. Joshi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, J., Joshi, R.P. & Schoenbach, K.H. Synergistic effects of local temperature enhancements on cellular responses in the context of high-intensity, ultrashort electric pulses. Med Biol Eng Comput 49, 713–718 (2011). https://doi.org/10.1007/s11517-011-0745-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-011-0745-z

Keywords

Navigation