[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Fast 3D reconstruction of the rib cage from biplanar radiographs

  • Technical Note
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The stereoradiographic reconstruction method allows obtaining the three-dimensional (3D) rib cage geometry, which is essential for clinical evaluation or biomechanical studies. However, reconstruction time is still high (about 20 min considering operator time). The purpose of this study is to propose a 3D reconstruction of the rib cage from biplanar radiographs, based on the deformation of a prepersonalized object. Validation in comparison with computed tomography (CT-scan) acquisitions was performed. Local parameters (rib length, cord length, maximum width, area, and rib orientations) were computed from reconstructions. Parameters’ reproducibility was assessed with two observers and two measurements for 15 subjects. Regarding validation of the parameters, the mean difference with the CT-scan was between 6.3 and 1.3%. Observer variability was maximal for rib area (6.2%) and was lower than 4.2% for others parameters. The proposed reconstruction method reduced time (less than three minutes for operator time) to obtain a 3D reconstruction of the rib cage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Andre B, Dansereau J, Labelle H (1994) Optimized vertical stereo base radiographic setup for the clinical three-dimensional reconstruction of the human spine. J Biomech 27(8):1023–1035

    Article  CAS  PubMed  Google Scholar 

  2. Baudoin A, Skalli W, Mitton D (2006) An accurate pelvis axis system using a low dose X-ray device. In: 6th annual conference of the international society for computer assisted orthopaedic surgery, Montréal, Canada, June 21–24

  3. Bellemare F, Jeanneret A, Couture J (2003) Sex differences in thoracic dimensions and configuration. Am J Respir Crit Care Med 168(3):305–312

    Article  PubMed  Google Scholar 

  4. Benameur S, Mignotte M, Destrempes F et al (2005) Three-dimensional biplanar reconstruction of scoliotic rib cage using the estimation of a mixture of probabilistic prior models. IEEE Trans Biomed Eng 52(10):1713–1728

    Article  PubMed  Google Scholar 

  5. Bertrand S, Laporte S, Parent S et al (2008) Three-dimensional reconstruction of the rib cage from biplanar radiography. IRBM 29(4):279–286

    Google Scholar 

  6. Chang PY, Hsu ZY, Chen DP et al (2008) Preliminary analysis of the forces on the thoracic cage of patients with pectus excavatum after the Nuss procedure. Clin Biomech (Bristol, Avon) 23(7):881–885

    Article  Google Scholar 

  7. Cheriet F, Meunier J (1999) Self-calibration of a biplane X-ray imaging system for an optimal three dimensional reconstruction. Comput Med Imaging Graph 23(3):133–141

    Article  CAS  PubMed  Google Scholar 

  8. Dansereau J, Stokes IA (1988) Measurements of the three-dimensional shape of the rib cage. J Biomech 21(11):893–901

    Article  CAS  PubMed  Google Scholar 

  9. Delorme S, Violas P, Dansereau J et al (2001) Preoperative and early postoperative three-dimensional changes of the rib cage after posterior instrumentation in adolescent idiopathic scoliosis. Eur Spine J 10(2):101–107

    Article  CAS  PubMed  Google Scholar 

  10. Delorme S, Petit Y, de Guise JA et al (2003) Assessment of the 3-d reconstruction and high-resolution geometrical modeling of the human skeletal trunk from 2-D radiographic images. IEEE Trans Biomed Eng 50(8):989–998

    Article  CAS  PubMed  Google Scholar 

  11. Dubousset J, Wicart P, Pomero V et al (2003) Spinal penetration index: new three-dimensional quantified reference for lordoscoliosis and other spinal deformities. J Orthop Sci 8(1):41–49

    Article  PubMed  Google Scholar 

  12. Dumas R, Mitton D, Laporte S et al (2003) Explicit calibration method and specific device designed for stereoradiography. J Biomech 36(6):827–834

    Article  CAS  PubMed  Google Scholar 

  13. Dumas R, Le Bras A, Champain N et al (2004) Validation of the relative 3D orientation of vertebrae reconstructed by bi-planar radiography. Med Eng Phys 26(5):415–422

    Article  CAS  PubMed  Google Scholar 

  14. Gluer CC, Blake G, Lu Y et al (1995) Accurate assessment of precision errors: how to measure the reproducibility of bone densitometry techniques. Osteoporos Int 5(4):262–270

    Article  CAS  PubMed  Google Scholar 

  15. Heary RF, Bono CM, Kumar S (2008) Bracing for scoliosis. Neurosurgery 63(3 Suppl):125–130

    Article  PubMed  Google Scholar 

  16. Humbert L, De Guise JA, Aubert B et al (2009) 3D reconstruction of the spine from biplanar X-rays using parametric models based on transversal and longitudinal inferences. Med Eng Phys 31(6):681–687

    Article  CAS  PubMed  Google Scholar 

  17. Klinder T, Lorenz C, von Berg J et al (2007) Automated model-based rib cage segmentation and labeling in CT images. Med Image Comput Comput Assist Interv Int Conf Med Image Comput Comput Assist Interv 10(Pt 2):195–202

    Google Scholar 

  18. Labelle H, Dansereau J, Bellefleur C et al (1995) Variability of geometric measurements from three-dimensional reconstructions of scoliotic spines and rib cages. Eur Spine J 4(2):88–94

    Article  CAS  PubMed  Google Scholar 

  19. Laporte S, Skalli W, de Guise JA et al (2003) A biplanar reconstruction method based on 2D and 3D contours: application to the distal femur. Comput Methods Biomech Biomed Eng 6(1):1–6

    Article  CAS  Google Scholar 

  20. Mitton D, Landry C, Veron S et al (2000) 3D reconstruction method from biplanar radiography using non-stereocorresponding points and elastic deformable meshes. Med Biol Eng Comput 38(2):133–139

    Article  CAS  PubMed  Google Scholar 

  21. Mitton D, Zhao K, Bertrand S et al (2008) 3D reconstruction of the ribs from lateral and frontal X-rays in comparison to 3D CT-scan reconstruction. J Biomech 41(3):706–710

    Article  PubMed  Google Scholar 

  22. Mitulescu A, Semaan I, De Guise JA et al (2001) Validation of the non-stereo corresponding points stereoradiographic 3D reconstruction technique. Med Biol Eng Comput 39(2):152–158

    Article  CAS  PubMed  Google Scholar 

  23. Pomero V, Mitton D, Laporte S et al (2004) Fast accurate stereoradiographic 3D-reconstruction of the spine using a combined geometric and statistic model. Clin Biomech (Bristol, Avon) 19(3):240–247

    Article  Google Scholar 

  24. Roberts SB, Chen PH (1972) Global geometric characteristics of typical human ribs. J Biomech 5(2):191–201

    Article  CAS  PubMed  Google Scholar 

  25. Roberts JC, Merkle AC, Biermann PJ et al (2007) Computational and experimental models of the human torso for non-penetrating ballistic impact. J Biomech 40(1):125–136

    Article  CAS  PubMed  Google Scholar 

  26. Shen W, Niu Y, Mattrey RF et al (2008) Development and validation of subject-specific finite element models for blunt trauma study. J Biomech Eng 130(2):021022

    Article  PubMed  Google Scholar 

  27. Staal J, van Ginneken B, Viergever MA (2007) Automatic rib segmentation and labeling in computed tomography scans using a general framework for detection, recognition and segmentation of objects in volumetric data. Med Image Anal 11(1):35–46

    Article  PubMed  Google Scholar 

  28. Trochu F (1993) A contouring program based on dual kriging interpolation. Eng Comput 9:160–177

    Article  Google Scholar 

  29. Yazici M, Acaroglu ER, Alanay A et al (2001) Measurement of vertebral rotation in standing versus supine position in adolescent idiopathic scoliosis. J Pediatr Orthop 21(2):252–256

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partly funded by ANR (project SECUR_ENFANT_06_0385).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Jolivet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jolivet, E., Sandoz, B., Laporte, S. et al. Fast 3D reconstruction of the rib cage from biplanar radiographs. Med Biol Eng Comput 48, 821–828 (2010). https://doi.org/10.1007/s11517-010-0610-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-010-0610-5

Keywords

Navigation