[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

A validated finite element analysis of nerve root stress in degenerative lumbar scoliosis

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Few studies have shown the relationship between the curve pattern and nerve root symptoms in degenerative lumbar scoliosis, and its mechanism remains unclear. We developed a finite element model of two patterns of scoliotic curves (isolated lateral bending curve, lateral bending combined with rotation curve). The stress on the nerve root was calculated on both sides (right and left) of the apex vertebra. In the lateral bending curves without rotation, the compressive nerve root stress on the concave side was greater than the tensile stress on the convex side at the apex vertebra. In contrast, when the segmental rotation of the vertebrae was added to the lateral bending curve, there was significantly higher tensile stress on the convex side, and lower compressive stress on the concave side. To conclude, rotatory listhesis may be an important pathomechanism in the development of neurologic symptoms on the convex side of the curve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aebi M (2005) The adult scoliosis. Eur Spine J 14:925–948. doi:10.1007/s00586-005-1053-9

    Article  Google Scholar 

  2. Beel JA, Stodieck LS, Luttges MW (1986) Structural properties of spinal nerve roots: biomechanics. Exp Neurol 91:30–40. doi:10.1016/0014-4886(86)90023-3

    Article  Google Scholar 

  3. Chen CS, Cheng CK, Liu CL et al (2001) Stress analysis of the disc adjacent to interbody fusion in lumbar spine. Med Eng Phys 23:483–491. doi:10.1016/S1350-4533(01)00076-5

    Article  Google Scholar 

  4. Cohen MS, Wall EJ, Brown RA et al (1990) 1990 AcroMed Award in basic science. Cauda equina anatomy. II: Extrathecal nerve roots and dorsal root ganglia. Spine 15:1248–1251. doi:10.1097/00007632-199012000-00003

    Article  Google Scholar 

  5. Daffner SD, Vaccaro AR (2003) Adult degenerative lumbar scoliosis. Am J Orthop 32:77–82

    Google Scholar 

  6. Ebraheim NA, Xu R, Darwich M et al (1997) Anatomic relations between the lumbar pedicle and the adjacent neural structures. Spine 22:2338–2341. doi:10.1097/00007632-199710150-00003

    Article  Google Scholar 

  7. Epstein JA, Epstein BS, Jones MD (1979) Symptomatic lumbar scoliosis with degenerative changes in the elderly. Spine 4:542–547

    Article  Google Scholar 

  8. Fraser JF, Huang RC, Girardi FP et al (2003) Pathogenesis, presentation, and treatment of lumbar spinal stenosis associated with coronal or sagittal spinal deformities. Neurosurg Focus 14:6. doi:10.3171/foc.2003.14.1.7

    Article  Google Scholar 

  9. Fujiwara A, An HS, Lim TH et al (2001) Morphologic changes in the lumbar intervertebral foramen due to flexion-extension, lateral bending, and axial rotation: an in vitro anatomic and biomechanical study. Spine 26:876–882. doi:10.1097/00007632-200104150-00010

    Article  Google Scholar 

  10. Glassman SD, Berven S, Bridwell K et al (2005) Correlation of radiographic parameters and clinical symptoms in adult scoliosis. Spine 30:682–688. doi:10.1097/01.brs.0000155425.04536.f7

    Article  Google Scholar 

  11. Goel VK, Kim YE, Lim TH et al (1988) An analytical investigation of the mechanics of spinal instrumentation. Spine 13:1003–1011. doi:10.1097/00007632-198809000-00007

    Article  Google Scholar 

  12. Goel VK, Kong W, Han JS et al (1993) A combined finite element and optimization investigation of lumbar spine mechanics with and without muscles. Spine 18:1531–1541. doi:10.1097/00007632-199318110-00019

    Article  Google Scholar 

  13. Jackson RP, Simmons EH, Stripinis D (1983) Incidence and severity of back pain in adult idiopathic scoliosis. Spine 8:749–756. doi:10.1097/00007632-198310000-00011

    Article  Google Scholar 

  14. Kadoury S, Cheriet F, Laporte C, Labelle H (2007) A versatile 3D reconstruction system of the spine and pelvis for clinical assessment of spinal deformities. Med Biol Eng Comput 45:591–602. doi:10.1007/s11517-007-0182-1

    Article  Google Scholar 

  15. Kobayashi T, Atsuta Y, Takemitsu M et al (2006) A prospective study of de novo scoliosis in a community based cohort. Spine 31:178–182. doi:10.1097/01.brs.0000194777.87055.1b

    Article  Google Scholar 

  16. Liu H, Ishihara H, Kanamori M et al (2003) Characteristics of nerve root compression caused by degenerative lumbar spinal stenosis with scoliosis. Spine J 3:524–529. doi:10.1522/cla.ala.spi

    Google Scholar 

  17. Mayoux-Benhamou MA, Revel M, Aaron C et al (1989) A morphometric study of the lumbar foramen: influence of flexion-extension movements and of isolated disc collapse. Surg Radiol Anat 11:97–102. doi:10.1007/BF02096463

    Article  Google Scholar 

  18. Oskouian RJ Jr, Shaffrey CI (2006) Degenerative lumbar scoliosis. Neurosurg Clin N Am 17:299–315. doi:10.1016/j.nec.2006.05.002

    Article  Google Scholar 

  19. Ploumis A, Transfeldt EE, Gilbert TJ Jr et al (2006) Degenerative lumbar scoliosis: radiographic correlation of lateral rotatory olisthesis with neural canal dimensions. Spine 31:2353–2358. doi:10.1097/01.brs.0000240206.00747.cb

    Article  Google Scholar 

  20. Schmid MR, Stucki G, Duewell S et al (1999) Changes in cross-sectional measurements of the spinal canal and intervertebral foramen as a function of body position: in vivo studies on an open-configuration MR system. AJR 172:1095–1102

    Google Scholar 

  21. Simmons ED (2001) Surgical treatment of patients with lumbar spinal stenosis with associated scoliosis. Clin Orthop Relat Res 45–53. doi:10.1097/00003086-200103000-00007

  22. Simmons ED Jr, Simmons EH (1992) Spinal stenosis with scoliosis. Spine 17:S117–S120. doi:10.1097/00007632-199201000-00019

    Article  Google Scholar 

  23. Simmons EH, Jackson RP (1979) The management of nerve root entrapment syndromes associated with the collapsing scoliosis of idiopathic lumbar and thoracolumbar curves. Spine 4:533–541. doi:10.1097/00007632-197911000-00016

    Article  Google Scholar 

  24. Singh A, Lu Y, Chen C et al (2006) Mechanical properties of spinal nerve roots subjected to tension at different strain rates. J Biomech 39:1669–1676. doi:10.1016/j.jbiomech.2005.04.023

    Article  Google Scholar 

  25. Sunderland S, Bradley KC (1961) Stress-strain phemomena in human spinal nerve roots. Brain 84:120–124. doi:10.1093/brain/84.1.120

    Article  Google Scholar 

  26. Trammell TR, Schroeder RD, Reed DB (1988) Rotatory olisthesis in idiopathic scoliosis. Spine 13:1378–1382. doi:10.1097/00007632-198812000-00009

    Article  Google Scholar 

  27. Wu HC, Yao RF (1976) Mechanical behavior of the human annulus fibrosus. J Biomech 9:1–7. doi:10.1016/0021-9290(76)90132-9

    Article  Google Scholar 

  28. Yamamoto I, Panjabi MM, Crisco T et al (1989) Three-dimensional movements of the whole lumbar spine and lumbosacral joint. Spine 14:1256–1260. doi:10.1097/00007632-198911000-00020

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by grant No. R01-2006-000-10933-0 from the Basic Research Program of the Korea Science & Engineering Foundation and by the Brain Korea 21 Project for Medical Science, Yonsei University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong-Hwan Moon.

Additional information

H.-J. Kim and H.-J. Chun contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, HJ., Chun, HJ., Kang, KT. et al. A validated finite element analysis of nerve root stress in degenerative lumbar scoliosis. Med Biol Eng Comput 47, 599–605 (2009). https://doi.org/10.1007/s11517-009-0463-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-009-0463-y

Keywords

Navigation