[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

New tracheal sound feature for apnoea analysis

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Sleep apnoea syndrome is common in the general population and is currently underdiagnosed. The aim of the present work was to develop a new tracheal sound feature for separation of apnoea events from non-apnoea time. Ten overnight recordings from apnoea patients containing 1,107 visually scored apnoea events totalling 7 h in duration and 72 h of non-apnoea time were included in the study. The feature was designed to describe the local spectral content of the sound signal. The median, maximum and mean smoothing of different time scales were compared in the feature extraction. The feature was designed to range from 0 to 1 irrespective of tracheal sound amplitudes. This constant range could offer application of the feature without patient-specific adjustments. The overall separation of feature values during apnoea events from non-apnoea time across all patients was good, reaching 80.8%. Due to the individual differences in tracheal sound signal amplitudes, developing amplitude-independent means for screening apnoea events is beneficial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Abeyratne UR, Karunajeewa AS, Hukins C (2007) Mixed-phase modeling in snore sound analysis. Med Biol Eng Comput 45:791–806. doi:10.1007/s11517-007-0186-x

    Article  Google Scholar 

  2. American Academy of Sleep Medicine (1999) Sleep related breathing disorders in adults: recommendation for syndrome definition and measurement techniques in clinical research. Sleep 22:667–689

    Google Scholar 

  3. Beck R, Rosenhouse G, Mahagnah M et al (2005) Measurements and theory of normal tracheal breath sounds. Ann Biomed Eng 33:1344–1351. doi:10.1007/s10439-005-5564-7

    Article  Google Scholar 

  4. Brietzke SE, Mair EA (2007) Acoustical analysis of pediatric snoring: what can we learn? Otolaryngol Head Neck Surg 136:644–648. doi:10.1016/j.otohns.2006.11.056

    Article  Google Scholar 

  5. Cummiskey J, Williams TC, Krumpe PE et al (1982) The detection and quantification of sleep apnea by tracheal sound recordings. Am Rev Respir Dis 126:221–224

    Google Scholar 

  6. Earis JE, Cheetham BMG (2000) Current methods used for computerized respiratory sound analysis. Eur Resp Rev 10:586–590

    Google Scholar 

  7. Gibson GJ (2004) Obstructive sleep apnoea syndrome: underestimated and undertreated. Br Med Bull 72:49–64. doi:10.1093/bmb/ldh044

    Article  Google Scholar 

  8. Hult P, Wranne B, Ask P (2000) A bioacoustic method for timing of the different phases of the breathing cycle and monitoring of breathing frequency. Med Eng Phys 22:425–433. doi:10.1016/S1350-4533(00)00050-3

    Article  Google Scholar 

  9. Huupponen E, Saastamoinen A, Saunamäki T et al (2009) Improved computational fronto-central sleep depth parameters show differences between apnea patients and control subjects. Med Biol Eng Comput 47:3–10

    Article  Google Scholar 

  10. Iber C, Ancoli-Israel S, Chesson AL et al (2007) The AASM manual for the scoring of sleep and associated events: rules, terminology, and technical specifications. American Academy of Sleep Medicine, Westchester

    Google Scholar 

  11. Kaniusas E, Pfützner H, Saletu B (2005) Acoustical signal properties for cardiac/respiratory activity and apneas. IEEE Trans Biomed Eng 52:1812–1822. doi:10.1109/TBME.2005.856294

    Article  Google Scholar 

  12. Kulkas A, Rauhala E, Huupponen E et al (2008) Detection of compressed tracheal sound patterns with large amplitude variation during sleep. Med Biol Eng Comput 46:315–321. doi:10.1007/s11517-008-0317-z

    Article  Google Scholar 

  13. Marcos JV, Hornero R, Alvarez D et al (2008) Radial basis function classifiers to help in the diagnosis of the obstructive sleep apnoea syndrome from nocturnal oximetry. Med Biol Eng Comput 46:323–332. doi:10.1007/s11517-007-0280-0

    Article  Google Scholar 

  14. Meslier N, Simon I, Kouatchet A et al (2002) Validation of a suprasternal pressure transducer for apnea classification during sleep. Sleep 25:753–757

    Google Scholar 

  15. Min SD, Yoon DJ, Yoon SW et al (2007) A study on a non-contacting respiration signal monitoring system using Doppler ultrasound. Med Biol Eng Comput 45:1113–1119. doi:10.1007/s11517-007-0246-2

    Article  Google Scholar 

  16. Mita M (2007) Algorithm for the classification of multi-modulating signals on the electrocardiogram. Med Biol Eng Comput 45:241–250. doi:10.1007/s11517-006-0130-5

    Article  Google Scholar 

  17. Nakano H, Hayashi M, Ohshima E et al (2004) Validation of a new system of tracheal sound analysis for the diagnosis of sleep apnea-hypopnea syndrome. Sleep 27:951–957

    Google Scholar 

  18. Penzel T, McNames J, Murray A (2002) Systematic comparison of different algorithms for apnoea detection based on the electrocardiogram recordings. Med Biol Eng Comput 40:402–407. doi:10.1007/BF02345072

    Article  Google Scholar 

  19. Peter JH, Koehler U, Grote L et al (1995) Manifestations and consequences of obstructive sleep apnoea. Eur Respir J 8:1572–1583

    Google Scholar 

  20. Rauhala E, Hasan J, Kulkas A et al (2008) Compressed tracheal sound analysis in screening of sleep-disordered breathing. Clin Neurophysiol 119:2037–2043. doi:10.1016/j.clinph.2008.04.298

    Article  Google Scholar 

  21. Rossi M, Sovijärvi AR, Piirilä P et al (2000) Environmental and subject conditions and breathing manoeuvres for respiratory sound recordings. Eur Respir Rev 10:611–615

    Google Scholar 

  22. Skomro RP, Kryger MH (1999) Clinical presentations of obstructive sleep apnea syndrome. Prog Cardiovasc Dis 41:331–340. doi:10.1053/pcad.1999.0410331

    Article  Google Scholar 

  23. Sovijärvi AR, Helistö P, Malmberg LP et al (1998) A new versatile PC-based lung sound analyzer with automatic crackle analysis (HeLSA); repeatability of spectral parameters and sound amplitude in healthy subjects. Technol Health Care 6:11–22

    Google Scholar 

  24. Sovijärvi AR, Malmberg L, Charbonneau G et al (2000) Characteristics of breath sounds and adventitious respiratory sounds. Eur Respir Rev 10:591–596

    Google Scholar 

  25. Tiihonen P, Pääkkönen A, Mervaala E et al (2008) Design, construction and evaluation of an ambulatory device for screening of sleep apnea. Med Biol Eng Comput (in press)

  26. Wittmann V, Rodenstein DO (2004) Health care costs and the sleep apnea syndrome. Sleep Med Rev 8:269–279. doi:10.1016/j.smrv.2004.01.002

    Article  Google Scholar 

  27. Yadollahi A, Moussavi ZM (2006) A robust method for estimating respiratory flow using tracheal sounds entropy. IEEE Trans Biomed Eng 53:662–668. doi:10.1109/TBME.2006.870231

    Article  Google Scholar 

  28. Yamashiro SM (2007) Non-linear dynamics of human periodic breathing and implications for sleep apnea therapy. Med Biol Eng Comput 45:345–356. doi:10.1007/s11517-006-0153-y

    Article  Google Scholar 

  29. Young T, Palta M, Dempsey J et al (1993) The occurrence of sleep-disordered breathing among middle-aged adults. N Engl J Med 328:1230–1235. doi:10.1056/NEJM199304293281704

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Technology Agency of Finland, the Research fund of the Tampere University Hospital, the Jenny and Antti Wihuri foundation, the Tampere Tuberculosis foundation, the Emil Aaltonen foundation, the Instrumentarium science foundation, as well as the Finnish Cultural foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kulkas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kulkas, A., Huupponen, E., Virkkala, J. et al. New tracheal sound feature for apnoea analysis. Med Biol Eng Comput 47, 405–412 (2009). https://doi.org/10.1007/s11517-009-0446-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-009-0446-z

Keywords

Navigation