[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A model for transcutaneous current stimulation: simulations and experiments

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Complex nerve models have been developed for describing the generation of action potentials in humans. Such nerve models have primarily been used to model implantable electrical stimulation systems, where the stimulation electrodes are close to the nerve (near-field). To address if these nerve models can also be used to model transcutaneous electrical stimulation (TES) (far-field), we have developed a TES model that comprises a volume conductor and different previously published non-linear nerve models. The volume conductor models the resistive and capacitive properties of electrodes, electrode-skin interface, skin, fat, muscle, and bone. The non-linear nerve models were used to conclude from the potential field within the volume conductor on nerve activation. A comparison of simulated and experimentally measured chronaxie values (a measure for the excitability of nerves) and muscle twitch forces on human volunteers allowed us to conclude that some of the published nerve models can be used in TES models. The presented TES model provides a first step to more extensive model implementations for TES in which e.g., multi-array electrode configurations can be tested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

TES:

Transcutaneous electrical stimulation

AP:

Action potential

PD:

Pulse duration

FE:

Finite element

TP:

Transmembrane potential

V FE(t):

Electric scalar potential

σ:

Conductivity

ρ:

Resistivity

ɛr :

Permittivity

V n (t):

Transmembrane potential at node n and time t

V e,n (t):

Extracellular potential at node n and time t

I i,n (t):

Ionic current at node n and time t

C m :

Membrane capacitance

G a :

Conductance of the axoplasm

I rh :

Rheobase

T ch :

Chronaxie

I th :

Threshold current

τsim :

Time constant of simulated recruitment-duration curve

τexp :

Time constant of measured recruitment-duration curve

Rec:

Recruitment

Recsat :

Saturation value of recruitment

g L :

Nodal leakage conductance

\(\varrho_i\) :

Axoplasmatic resistivity

References

  1. Bajzek TJ, Jaeger RJ (1987) Characterization and control of muscle response to electrical stimulation. Ann Biomed Eng 15:485–501

    Article  Google Scholar 

  2. Baker LL, McNeal DR, Benton L, Bowman BR, Waters RL (2000) Neuro muscular electrical stimulation, 4th edn

  3. Bostock H (1983) The strength-duration relationship for excitation of myelinated nerve: computed dependence on membrane parameters. J Physiol 341:59–74

    Google Scholar 

  4. Chiu SY, Ritchie JM, Rogart RB, Stagg D (1979) A quantitative description of membrane currents in rabbit myelinated nerve. J Physiol 292:149–166

    Google Scholar 

  5. Chou LW, Binder-Macleod SA (2007) The effects of stimulation frequency and fatigue on the force-intensity relationship for human skeletal muscle. Clin Neurophysiol 118:1387–1396

    Article  Google Scholar 

  6. Crago PE, Peckham PH, Mortimer JT, Van der Meulen JP (1974) The choice of pulse duration for chronic electrical stimulation via surface, nerve, and intramuscular electrodes. Ann Biomed Eng 2:252–264

    Article  Google Scholar 

  7. Dorgan SJ, Reilly RB (1999) A model for human skin impedance during surface functional neuromuscular stimulation. IEEE Trans Rehabil Eng 7:341–348

    Article  Google Scholar 

  8. Elsaify A, Fothergill J, Peasgood W (2004) A portable fes system incorporating an electrode array and feedback sensors. In: Vienna Int. Workshop on Functional Electrostimulation, vol 8, pp 191–194

  9. Fitzhugh R (1962) Computation of impulse initiation and saltatory conduction in a myelinated nerve fiber. Biophys J 2:11–21

    Article  MathSciNet  Google Scholar 

  10. Foster KR, Schwan HP (1989) Dielectric properties of tissues and biological materials: a critical review. Crit Rev Biomed Eng 17:25–104

    Google Scholar 

  11. Frankenhaeuser B, Huxley AF (1964) The action potential in the myelinated nerve fiber of xenopus laevis as computed on the basis of voltage clamp data. J Physiol 171:302–315

    Google Scholar 

  12. Gabriel S, Lau RW, Gabriel C (1996) The dielectric properties of biological tissues: Iii. parametric models for the dielectric spectrum of tissues. Phys Med Biol 41:2271–2293

    Article  Google Scholar 

  13. Geddes LA (2004) Accuracy limitations of chronaxie values. IEEE Trans Biomed Eng 51:176–181

    Article  Google Scholar 

  14. Gregory CM, Dixon W, Bickel CS (2007) Impact of varying pulse frequency and duration on muscle torque production and fatigue. Muscle Nerve 35:504–509

    Article  Google Scholar 

  15. Harris R (1971) Chronaxy. In: SL (ed) Electrodiagnosis and electromyography, Baltimore, pp 218–239

  16. Hines ML, Carnevale NT (2001) Neuron: a tool for neuroscientists. Neuroscientist 7:123–135

    Article  Google Scholar 

  17. Hodgkin AL, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544

    Google Scholar 

  18. Holsheimer J, Wesselink WA (1997) Optimum electrode geometry for spinal cord stimulation: the narrow bipole and tripole. Med Biol Eng Comput 35:493–497

    Article  Google Scholar 

  19. Jezernik S, Morari M (2005) Energy-optimal electrical excitation of nerve fibers. IEEE Trans Biomed Eng 52:740–743

    Article  Google Scholar 

  20. Keller T, Popovic M, Amman M, Andereggen C, Dumont C (2000) A system for measuring finger forces during grasping. In: International functional electrical stimulation society conference, Aalborg, Denmark

  21. Keller T, Popovic MR, Pappas IPI, Muller PY (2002) Transcutaneous functional electrical stimulator “compex motion”. Artif Organs 26:219–223

    Article  Google Scholar 

  22. Kesar T, Binder-Macleod S (2006) Effect of frequency and pulse duration on human muscle fatigue during repetitive electrical stimulation. Exp Physiol 91:967–976

    Article  Google Scholar 

  23. Kiernan MC, Burke D, Andersen KV, Bostock H (2000) Multiple measures of axonal excitability: a new approach in clinical testing. Muscle Nerve 23:399–409

    Article  Google Scholar 

  24. Kuhn A, Keller T (2005) A 3d transient model for transcutaneous functional electrical stimulation. In: International functional electrical stimulation society conference, vol 10, Montreal, Canada, pp 385–387

  25. Kuhn A, Keller T (2006) The influence of capacitive properties on nerve activation in transcutaneous electrical stimulation. In: International symposium on computer methods in biomechanics and biomedical engineering, vol 7, Antibes, France

  26. Kuhn A, Rauch GA, Keller T, Morari M, Dietz V (2005) A finite element model study to find the major anatomical influences on transcutaneous electrical stimulation. In: ZNZ Symposium, Zurich, Switzerland

  27. Kuhn A, Rauch GA, Panchaphongsaphak P, Keller T (2005) Using transient fe models to assess anatomical influences on electrical stimulation. In: FEM Workshop, vol 12, Ulm, Germany

  28. Kuhn A, Keller T, Prenaj B, Morari M (2006) The relevance of non-linear skin properties for a transcutaneous electrical stimulation model. In: International functional electrical stimulation society conference, vol 11, Zao, Japan

  29. Lapicque L (1907) Recherches quantitatives sur l’excitation electrique des nerfs traitee comme une polarisation. J Physiol Paris 9:622–635

    Google Scholar 

  30. Lawrence M, Pitschen G, Keller T, Kuhn A, Morari M (2008) Finger and wrist torque measurement system for the evaluation of grasp performance with neuroprosthesis. Artif Organs (in press)

  31. Lertmanorat Z, Gustafson KJ, Durand DM (2006) Electrode array for reversing the recruitment order of peripheral nerve stimulation: experimental studies. Ann Biomed Eng 34:152–160

    Article  Google Scholar 

  32. Livshitz LM, Einziger PD, Mizrahi J (2002) Rigorous green’s function formulation for transmembrane potential induced along a 3-d infinite cylindrical cell. IEEE Trans Biomed Eng 49:1491–1503

    Article  Google Scholar 

  33. Manola L, Roelofsen BH, Holsheimer J, Marani E, Geelen J (2005) Modelling motor cortex stimulation for chronic pain control: electrical potential field, activating functions and responses of simple nerve fibre models. Med Biol Eng Comput 43:335–343

    Article  Google Scholar 

  34. Martinek J, Reichel M, Rattay F, Mayr W (2004) Analysis of calculated electrical activation of denervated muscle fibres in the human thigh. In: Proceedings of 8th Vienna international workshop on functional electrical stimulation, pp 228–231

  35. Martinek J, Stickler Y, Dohnal F, Reichel M, Mayr W, Rattay F (2006) Simulation der funktionellen elektrostimulation im menschlichen oberschenkel unter verwendung von femlab. In: Proceedings of the COMSOL Users Conference 2006, Frankfurt, pp 20–23

  36. Martinek J, Stickler Y, Reichel M, Rattay F (2007) A new approach to simulate hodgkin-huxley like excitation with comsol multiphysics (femlab). In: Proceedings of 9th Vienna international workshop on functional electrical stimulation, pp 163–166

  37. McIntyre CC, Richardson AG, Grill WM (2002) Modeling the excitability of mammalian nerve fibers: influence of afterpotentials on the recovery cycle. J Neurophysiol 87:995–1006

    Google Scholar 

  38. McNeal DR (1976) Analysis of a model for excitation of myelinated nerve. IEEE Trans Biomed Eng 23:329–337

    Article  Google Scholar 

  39. Mesin L, Merletti R (2008) Distribution of electrical stimulation current in a planar multilayer anisotropic tissue. IEEE Trans Biomed Eng 55:660–670

    Article  Google Scholar 

  40. Polk C (1986) CRC handbook of biological effects of electromagnetic fields. CRC Press, Boca Raton

  41. Prodanov D, Feirabend HK (2007) Morphometric analysis of the fiber populations of the rat sciatic nerve, its spinal roots, and its major branches. J Comp Neurol 503:85–100

    Article  Google Scholar 

  42. Rattay F (1990) Electrical nerve stimulation theory, experiments and applications. Springer, Wien

  43. Reichel M, Martinek J, Mayr W, Rattay F (2004) Functional electrical stimulation of denervated skeletal muscle fibers in 3d human thigh—modeling and simulation. In: Proceedings of 8th Vienna international workshop on functional electrical stimulation, pp 44–47

  44. Reilly JP, Bauer RH (1987) Application of a neuroelectric model to electrocutaneous sensory sensitivity: parameter variation study. IEEE Trans Biomed Eng 34:752–754

    Article  Google Scholar 

  45. Reilly JP, Antoni H, Chilbert MA, Sweeney JD (1998) Applied bioelectricity from electrical stimulation to electropathology. Springer, New York

  46. Rijkhoff NJ, Holsheimer J, Koldewijn EL, Struijk JJ, van Kerrebroeck PE, Debruyne FM, Wijkstra H (1994) Selective stimulation of sacral nerve roots for bladder control: a study by computer modeling. IEEE Trans Biomed Eng 41:413–24

    Article  Google Scholar 

  47. Schiefer MA, Triolo RJ, Tyler DJ (2008) A model of selective activation of the femoral nerve with a flat interface nerve electrode for a lower extremity neuroprosthesis. IEEE Trans Neural Syst Rehabil Eng 16:195–204

    Article  Google Scholar 

  48. Schuhfried O, Kollmann C, Paternostro-Sluga T (2005) Excitability of chronic hemiparetic muscles: determination of chronaxie values and strength-duration curves and its implication in functional electrical stimulation. IEEE Trans Neural Syst Rehabil Eng 13:105–109

    Article  Google Scholar 

  49. Sotiropoulos SN, Steinmetz PN (2007) Assessing the direct effects of deep brain stimulation using embedded axon models. J Neural Eng 4:107–119

    Article  Google Scholar 

  50. Standring S (2005) Gray’s Anatomy, 39th edn

  51. Strickler Y, Martinek J, Hofer C, Rattay F (2007) A finite element model of the electrically stimulated human thigh: Changes due to denervation and training. In: Proc. of 9th Vienna International Workshop on Functional Electrical Stimulation, Krems, Austria, pp 20–23

  52. Sweeney J, Mortimer J, Durand D (1987) Modeling of mammalian myelinated nerve for functional neuromuscular stimulation. In: Proc. of IEEE 9th Annual Conference of the Engineering in Medicine and Biology Society, pp 1577–1578

  53. Valentin J (2001) Basic anatomical and physiological data for use in radiological protection: reference values. Ann ICRP

  54. Vodovnik L, Crochetiere WJ, Reswick JB (1967) Control of a skeletal joint by electrical stimulation of antagonists. Med Biol Eng 5:97–109

    Article  Google Scholar 

  55. Zierhofer CM (2001) Analysis of a linear model for electrical stimulation of axons–critical remarks on the “activating function concept”. IEEE Trans Biomed Eng 48:173–184

    Article  Google Scholar 

Download references

Acknowledgments

The project was supported by the Swiss National Science Foundation (SNF) No. 205321-107904/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Kuhn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuhn, A., Keller, T., Lawrence, M. et al. A model for transcutaneous current stimulation: simulations and experiments. Med Biol Eng Comput 47, 279–289 (2009). https://doi.org/10.1007/s11517-008-0422-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-008-0422-z

Keywords

Navigation