[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Analysis of implantable cardioverter defibrillator signals for non conventional cardiac electrical activity characterization

  • ORIGINAL ARTICLE
  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

Implantable cardioverter defibrillators (ICDs) can store intracardiac electrograms (EGMs) in sinus rhythm (SR), at the onset of spontaneous ventricular tachyarrhythmias (VT) or during their course. This allows the investigation of unknown features of the heart electrical activity associated with different cardiac rhythms. In this study we propose a non conventional cardiac electrical activity characterization (CEAC) that extracts quantitative information about the power spectrum wideness and variability of the beat-by-beat morphology. We analyze 293 EGMs from 40 patients who underwent implantation of St Jude Medical–Ventritex ICDs that allow the storage of EGMs with two different modes of recording: bipolar (BIP) and unipolar or far-field (FF). The EGMs are studied with this CEAC by (1) exploring differences between the CEAC measured from FF and BIP EGMs during similar cardiac rhythms, and (2) investigating the mode of recording that allows a better separation between SR and VT rhythms. Results show that, with similar cardiac rhythm, the CEACs from FF or BIP recordings are different (for SR rhythm: sensitivity 81.5%, specificity 93.6%; for VT rhythm: sensitivity and specificity 100%); thus FF and BIP EGMs analyze different aspects of cardiac activity.The CEAC applied to FF EGMs distinguishes better EGMs obtained during SR from VT rhythms (VT vs SR with sensitivity 92.7% and specificity 79.7%) than when it is applied to BIP signals (VT vs SR with sensitivity 60% and specificity 73.3%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bloomfield DM, Steinman RC, Namerow PB, Parides M, Davidenko J, Kaufman ES, Shinn T, Curtis A, Fontaine J, Holmes D, Russo A, Tang C, Bigger JT Jr (2004) Microvolt T-wave alternans distinguishes between patients likely and patients not likely to benefit from implanted cardiac defibrillator therapy: a solution to the Multicenter Automatic Defibrillator Implantation Trial (MADIT) II conundrum. Circulation 110:1885–1889

    Article  PubMed  Google Scholar 

  2. Boriani G, Occhetta E, Pistis G, Menozzi G, Jorfida M, Sermasi S, Pagani M, Gasparini G, Musso G, Dall’Acqua A, Biffi M, Branzi A (2002) Combined use of morphology discrimination, sudden onset and stability as discriminating algorithm in single chamber cardioverter defibrillators. Pacing Clin Electrophysiol 25:1357–1366

    Article  PubMed  Google Scholar 

  3. Buchman T (2004) Non linear dynamics, complex systems and the pathobiology of critical illness. Curr Opin Crit Care 10:378–392

    Article  PubMed  Google Scholar 

  4. Casaleggio A, Bortolan G (1999) Automatic estimation of the correlation dimension for the analysis of electrocardiograms. Biol Cybern 81:279–290

    Article  PubMed  MATH  Google Scholar 

  5. Corana A, Bortolan G, Casaleggio A (2004) Most probable dimension value and Most flat interval methods for automatic estimation of dimension from time series. Chaos Solitons Fractals 20:779–790

    Article  MathSciNet  MATH  Google Scholar 

  6. Eckmann JP, Ruelle D (1992) Fundamental limitations for estimating dimension and Lyapunov exponents in dynamical systems. Phys D 56:185–187

    Article  MathSciNet  Google Scholar 

  7. Grassberger P, Procaccia I (1983) Measuring the strangeness of strange attractors. Phys D 9:189–208

    Article  MATH  MathSciNet  Google Scholar 

  8. Hooke R, Jeeves TA (1969) Direct search solution of numerical and statistical problems. J ACM 7:212–229

    Google Scholar 

  9. Huikuri HV, Makikallio TH, Raatikainen MJ, Perkiomaki J, Castellanos A, Myerburg RJ (2003) Prediction of sudden cardiac death: appraisal of the studies and methods assessing the risk of sudden arrhythmic death. Circulation 108:110–115

    Article  PubMed  Google Scholar 

  10. Jekova I, Dushanova J, Popivanov D (2002) Method for ventricular fibrillation detection in the external electrocardiogram using nonlinear prediction. Physiol Meas 23:337–345

    Article  PubMed  Google Scholar 

  11. Kalahasti V, Nambi V, Martin DO, Lam CT, Yamada D, Wilkoff BL, Niebauer MJ, Jaeger FJ, Tchou PJ, Chung MK (2003) QRS duration and prediction of mortality in patients undergoing risk stratification for ventricular arrhythmias. Am J Cardiol 92:798–803

    Article  PubMed  Google Scholar 

  12. Moss AJ, Hall WJ, Cannom DS, Daubert JP, Higgins SL, Klein H, Levine JH, Saksena S, Waldo AL, Wilber D, Brown MW, Heo M (1996) Improved survival with an implanted defibrillator in patients with coronary disease at high risk for ventricular arrhythmia. for the Multicenter Automatic Defibrillator Implantation Trial Investigators. N Engl J Med 335:1933–1940

    Article  PubMed  Google Scholar 

  13. Nahshoni E, Strasberg B, Adler E, Imbar S, Sulkes J, Weizman A. (2004) Complexity of the dynamic QT variability and RR variability in patients with acute anterior wall myocardial infarction: a novel technique using a non-linear method. J Electrocardiol 37:173–179

    Article  PubMed  Google Scholar 

  14. Ott E, Sauer T, Yorke JA (1994) Coping with chaos. Wiley, New York

    MATH  Google Scholar 

  15. Owis MI, Abou-Zied AH, Youssef ABM, Kadah YM (2002) Study of features based on nonlinear dynamical modeling in ECG arrhythmia detection and classification. IEEE Trans Biomed Eng 49:733–736

    Article  PubMed  Google Scholar 

  16. Perkiomaki JS, Couderc JP, Daubert JP, Zareba W (2003) Temporal complexity of repolarization and mortality in patients with implantable cardioverter defibrillators. Pacing Clin Electrophysiol 26:1931–1936

    Article  PubMed  Google Scholar 

  17. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes. Cambridge University Press, Cambridge

    Google Scholar 

  18. Raitt MH, Klein RC, Wyse DG, Wilkoff BL, Beckman K, Epstein AE, Coromilas J, Friedman PL, Martins J, Ledingham RB, Greene HL (2003) AVID investigators comparison of arrhythmia recurrence in patients presenting with ventricular fibrillation versus ventricular tachycardia in the antiarrhythmics versus implantable defibrillators (AVID) trial. Am J Cardiol 91:812–816

    Article  PubMed  Google Scholar 

  19. Saed M, Link MS, Mahapatra S, Mouded M, Tzeng D, Jung V, Contreras R, Swygman C, Hamoud M, Estes NA, Wang PJ (2000) Analysis of intracardiac electrograms showing monomorphic ventricular tachycardia in patients with implantable cardioverter defibrillators. Am J Cardiol 85:580–587

    Article  PubMed  Google Scholar 

  20. Sanders P, Berenfeld O, Hocini M, Jais P, Vaidyanathan R, Hsu LF, Garrigue S, Takahashi Y, Rotter M, Sacher F, Scavee C, Ploutz-Snyder R, Jalife J, Haissaguerre M (2005) Spectral analysis identifies sites of high-frequency activity maintaining atrial fibrillation in humans. Circulation 112:789–797

    Article  PubMed  Google Scholar 

  21. Sauer T, Yorke JA, Casdagli M (1991) Embedology. J Stat Phys 65:579–616

    Article  MATH  MathSciNet  Google Scholar 

  22. Small M, Yu D, Simonotto J, Harrison RG, Grubb N, Fox KAA (2002) Uncoverng non-linear structure in human ECG recordings. Chaos Solitons Fractals 13:1755–1762

    Article  Google Scholar 

  23. Snedecor W, Cochran WG (1989) Statistical methods. Iowa State University Press, Ames

    MATH  Google Scholar 

  24. Thomsen MB, Truin M, van Opstal JM, Beekman JD, Volders PG, Stengl M, Vos MA (2005) Sudden cardiac death in dogs with remodeled hearts is associated with larger beat-to-beat variability of repolarization. Basic Res Cardiol 100:279–287

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to Josh Reiss from St Jude Medical – Sunny Vale for his comments on this paper and to Stella De Robertis for English language assistance. We also like to thank Prof. Sergio Chierchia for his helpful comments and Dr Roberto Mureddu, Dr Edoardo Casali, and Dr Natale di Belardino for their help in recruiting electrograms during the early stage of the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aldo Casaleggio.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casaleggio, A., Rossi, P., Faini, A. et al. Analysis of implantable cardioverter defibrillator signals for non conventional cardiac electrical activity characterization. Med Bio Eng Comput 44, 45–53 (2006). https://doi.org/10.1007/s11517-005-0014-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-005-0014-0

Keywords

Navigation