Abstract
The functional integrity of mitochondria is a critical determinant of neuronal health and compromised mitochondrial function is a commonly recognized factor that underlies a plethora of neurological and neurodegenerative diseases. Metabolic demands of neural cells require high bioenergetic outputs that are often associated with enhanced production of reactive oxygen species. Unopposed accumulation of these respiratory byproducts over time leads to oxidative damage and imbalanced protein homeostasis within mitochondrial subcompartments, which in turn may result in cellular demise. The post-mitotic nature of neurons and their vulnerability to these stress factors necessitate strict protein homeostatic control to prevent such scenarios. A series of evolutionarily conserved proteases is one of the central elements of mitochondrial quality control. These versatile proteolytic enzymes conduct a multitude of activities to preserve normal mitochondrial function during organelle biogenesis, metabolic remodeling and stress. In this review we discuss neuroprotective aspects of mitochondrial quality control proteases and neuropathological manifestations arising from defective proteolysis within the mitochondrion.
Similar content being viewed by others
References
Aldridge JE, Horibe T, Hoogenraad NJ (2007) Discovery of genes activated by the mitochondrial unfolded protein response (mtUPR) and cognate promoter elements. PLoS One 2, e874. doi:10.1371/journal.pone.0000874
Al-Furoukh N, Kardon JR, Krüger M et al (2014) NOA1, a novel ClpXP substrate, takes an unexpected nuclear detour prior to mitochondrial import. PLoS One 9, e103141. doi:10.1371/journal.pone.0103141
Alikhani N, Guo L, Yan S et al (2011) Decreased proteolytic activity of the mitochondrial amyloid-β degrading enzyme, PreP peptidasome, in Alzheimer’s disease brain mitochondria. J Alzheimers Dis 27:75–87. doi:10.3233/JAD-2011-101716
Almajan ER, Richter R, Paeger L et al (2012) AFG3L2 supports mitochondrial protein synthesis and Purkinje cell survival. J Clin Invest 122:4048–4058. doi:10.1172/JCI64604
Almontashiri NAM, Chen H-H, Mailloux RJ et al (2014) SPG7 variant escapes phosphorylation-regulated processing by AFG3L2, elevates mitochondrial ROS, and is associated with multiple clinical phenotypes. Cell Rep 7:834–847. doi:10.1016/j.celrep.2014.03.051
Amadoro G, Corsetti V, Florenzano F, et al (2014) Morphological and bioenergetic demands underlying the mitophagy in post-mitotic neurons: the pink-parkin pathway. Front Aging Neurosci 6
Anand R, Wai T, Baker MJ et al (2014) The i-AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission. J Cell Biol 204:919–929. doi:10.1083/jcb.201308006
Andrews HE, Nichols PP, Bates D, Turnbull DM (2005) Mitochondrial dysfunction plays a key role in progressive axonal loss in multiple sclerosis. Med Hypotheses 64:669–677. doi:10.1016/j.mehy.2004.09.001
Archer SL (2013) Mitochondrial dynamics—mitochondrial fission and fusion in human diseases. N Engl J Med 369:2236–2251. doi:10.1056/NEJMra1215233
Arena JE, Weigand SD, Whitwell JL et al (2016) Progressive supranuclear palsy: progression and survival. J Neurol 263:380–9. doi:10.1007/s00415-015-7990-2
Atorino L, Silvestri L, Koppen M et al (2003) Loss of m-AAA protease in mitochondria causes complex I deficiency and increased sensitivity to oxidative stress in hereditary spastic paraplegia. J Cell Biol 163:777–787. doi:10.1083/jcb.200304112
Baker TA, Sauer RT (2012) ClpXP, an ATP-powered unfolding and protein-degradation machine. Biochim Biophys Acta, Mol Cell Res 1823:15–28. doi:10.1016/j.bbamcr.2011.06.007
Baker MJ, Lampe PA, Stojanovski D et al (2014) Stress-induced OMA1 activation and autocatalytic turnover regulate OPA1-dependent mitochondrial dynamics. EMBO J 33:578–593. doi:10.1002/embj.201386474
Banfi S, Bassi MT, Andolfi G et al (1999) Identification and characterization of AFG3L2, a novel paraplegin-related gene. Genomics 59:51–58. doi:10.1006/geno.1999.5818
Bertelsen B, Melchior L, Jensen LR et al (2014) Intragenic deletions affecting two alternative transcripts of the IMMP2L gene in patients with Tourette syndrome. Eur J Hum Genet 22:1283–1289. doi:10.1038/ejhg.2014.24
Bezawork-Geleta A, Brodie EJ, Dougan DA, Truscott KN (2015) LON is the master protease that protects against protein aggregation in human mitochondria through direct degradation of misfolded proteins. Sci Rep 5:17397. doi:10.1038/srep17397
Boeve BF (2012) Progressive supranuclear palsy. Parkinsonism Relat Disord 18:S192–S194. doi:10.1016/S1353-8020(11)70060-8
Bohovych I, Donaldson G, Christianson S et al (2014) Stress-triggered activation of the metalloprotease Oma1 involves its C-terminal region and is important for mitochondrial stress protection in yeast. J Biol Chem 289:13259–13272. doi:10.1074/jbc.M113.542910
Bohovych I, Chan SSL, Khalimonchuk O (2015a) Mitochondrial protein quality control: the mechanisms guarding mitochondrial health. Antioxid Redox Signal 22:977–994. doi:10.1089/ars.2014.6199
Bohovych I, Fernandez MR, Rahn JJ et al (2015b) Metalloprotease OMA1 fine-tunes mitochondrial bioenergetic function and respiratory supercomplex stability. Sci Rep 5:13989. doi:10.1038/srep13989
Bota DA, Van Remmen H, Davies KJ (2002) Modulation of Lon protease activity and aconitase turnover during aging and oxidative stress. FEBS Lett 532:103–106. doi:10.1016/S0014-5793(02)03638-4
Burri L, Strahm Y, Hawkins CJ et al (2005) Mature DIABLO/Smac is produced by the IMP protease complex on the mitochondrial inner membrane. Mol Biol Cell 16:2926–33. doi:10.1091/mbc.E04-12-1086
Burté F, Carelli V, Chinnery PF, Yu-Wai-Man P (2015) Disturbed mitochondrial dynamics and neurodegenerative disorders. Nat Rev Neurol 11:11–24. doi:10.1038/nrneurol.2014.228
Cagnoli C, Stevanin G, Brussino A et al (2010) Missense mutations in the AFG3L2 proteolytic domain account for ∼ 1.5% of European autosomal dominant cerebellar ataxias. Hum Mutat 31:1117–1124. doi:10.1002/humu.21342
Casadei N, Sood P, Ulrich T et al (2016) Mitochondrial defects and neurodegeneration in mice overexpressing wild-type or G399S mutant HtrA2. Hum Mol Genet 25:459–471. doi:10.1093/hmg/ddv485
Casari G, De Fusco M, Ciarmatori S et al (1998) Spastic paraplegia and OXPHOS impairment caused by mutations in paraplegin, a nuclear-encoded mitochondrial metalloprotease. Cell 93:973–983. doi:10.1016/S0092-8674(00)81203-9
Casey JP, Magalhaes T, Conroy JM et al (2012) A novel approach of homozygous haplotype sharing identifies candidate genes in autism spectrum disorder. Hum Genet 131:565–79. doi:10.1007/s00439-011-1094-6
Chan NC, Chan DC (2011) Parkin uses the UPS to ship off dysfunctional mitochondria. Autophagy 7:771–772. doi:10.4161/auto.7.7.15453
Chao de la Barca JM, Prunier-Mirebeau D, Amati-Bonneau P et al (2015) OPA1-related disorders: diversity of clinical expression, modes of inheritance and pathophysiology. Neurobiol Dis. doi:10.1016/j.nbd.2015.08.015
Chao J-R, Parganas E, Boyd K et al (2008) Hax1-mediated processing of HtrA2 by Parl allows survival of lymphocytes and neurons. Nature 452:98–102. doi:10.1038/nature06604
Chen S-H, Suzuki CK, Wu S-H (2007) Thermodynamic characterization of specific interactions between the human Lon protease and G-quartet DNA. Nucleic Acids Res 36:1273–1287. doi:10.1093/nar/gkm1140
Chen G, Han Z, Feng D et al (2014) A regulatory signaling loop comprising the PGAM5 phosphatase and CK2 controls receptor-mediated mitophagy. Mol Cell 54:362–377. doi:10.1016/j.molcel.2014.02.034
Cipolat S, Rudka T, Hartmann D et al (2006) Mitochondrial rhomboid PARL regulates cytochrome c release during apoptosis via OPA1-dependent cristae remodeling. Cell 126:163–175. doi:10.1016/j.cell.2006.06.021
Clausen T, Kaiser M, Huber R, Ehrmann M (2011) HTRA proteases: regulated proteolysis in protein quality control. Nat Rev Mol Cell Biol 12:152–162. doi:10.1038/nrm3065
Cook C, Stetler C, Petrucelli L (2012) Disruption of protein quality control in Parkinson’s disease. Cold Spring Harb Perspect Med 2:a009423–a009423. doi:10.1101/cshperspect.a009423
Corti O, Lesage S, Brice A (2011) What genetics tells us about the causes and mechanisms of Parkinson’s disease. Physiol Rev 91:1161–218. doi:10.1152/physrev.00022.2010
Daoud H, Valdmanis PN, Gros-Louis F et al (2011) Resequencing of 29 candidate genes in patients with familial and sporadic amyotrophic lateral sclerosis. Arch Neurol 68:587–93. doi:10.1001/archneurol.2010.351
Desmurs M, Foti M, Raemy E et al (2015) C11orf83, a mitochondrial cardiolipin-binding protein involved in bc1 complex assembly and supercomplex stabilization. Mol Cell Biol 35:1139–56. doi:10.1128/MCB.01047-14
Di Bella D, Lazzaro F, Brusco A et al (2010) Mutations in the mitochondrial protease gene AFG3L2 cause dominant hereditary ataxia SCA28. Nat Genet 42:313–321. doi:10.1038/ng.544
Diaz F, Moraes CT (2008) Mitochondrial biogenesis and turnover. Cell Calcium 44:24–35
Edener U, Wöllner J, Hehr U et al (2010) Early onset and slow progression of SCA28, a rare dominant ataxia in a large four-generation family with a novel AFG3L2 mutation. Eur J Hum Genet 18:965–968. doi:10.1038/ejhg.2010.40
Ehses S, Raschke I, Mancuso G et al (2009) Regulation of OPA1 processing and mitochondrial fusion by m -AAA protease isoenzymes and OMA1. J Cell Biol 187:1023–1036. doi:10.1083/jcb.200906084
Falkevall A, Alikhani N, Bhushan S et al (2006) Degradation of the amyloid ??-protein by the novel mitochondrial peptidasome, PreP. J Biol Chem 281:29096–29104. doi:10.1074/jbc.M602532200
Ferreirinha F, Quattrini A, Pirozzi M et al (2004) Axonal degeneration in paraplegin-deficient mice is associated with abnormal mitochondria and impairment of axonal transport. J Clin Invest 113:231–242. doi:10.1172/JCI20138
Fink JK (2006) Hereditary spastic paraplegia. Curr Neurol Neurosci Rep 6:65–76. doi:10.1007/s11910-996-0011-1
Fiumara A, Sorge G, Toscano A et al (2004) Perrault syndrome: evidence for progressive nervous system involvement. Am J Med Genet 128A:246–249. doi:10.1002/ajmg.a.20616
Frezza C, Cipolat S, Scorrano L (2007) Measuring mitochondrial shape changes and their consequences on mitochondrial involvement during apoptosis. Methods Mol Biol 372:405–20. doi:10.1007/978-1-59745-365-3_29
Fukada K (2004) Mitochondrial proteomic analysis of a cell line model of familial amyotrophic lateral sclerosis. Mol Cell Proteomics 3:1211–1223. doi:10.1074/mcp.M400094-MCP200
Fukuda R, Zhang H, Kim J et al (2007) HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell 129:111–122. doi:10.1016/j.cell.2007.01.047
Gakh O, Cavadini P, Isaya G (2002) Mitochondrial processing peptidases. Biochim Biophys Acta, Mol Cell Res 1592:63–77
Gimelli S, Capra V, Di Rocco M et al (2014) Interstitial 7q31.1 copy number variations disrupting IMMP2L gene are associated with a wide spectrum of neurodevelopmental disorders. Mol Cytogenet 7:54. doi:10.1186/s13039-014-0054-y
Gispert S, Parganlija D, Klinkenberg M et al (2013) Loss of mitochondrial peptidase Clpp leads to infertility, hearing loss plus growth retardation via accumulation of CLPX, mtDNA and inflammatory factors. Hum Mol Genet 22:4871–4887. doi:10.1093/hmg/ddt338
Gottschalk ME, Coker SB, Fox LA (1996) Neurologic anomalies of Perrault syndrome. Am J Med Genet 65:274–276. doi:10.1002/(SICI)1096-8628(19961111)65:4<274::AID-AJMG5>3.0.CO;2-P
Graef M, Seewald G, Langer T (2007) Substrate recognition by AAA+ ATPases: distinct substrate binding modes in ATP-dependent protease Yme1 of the mitochondrial intermembrane space. Mol Cell Biol 27:2476–2485. doi:10.1128/MCB.01721-06
Green DR, Galluzzi L, Kroemer G (2011) Mitochondria and the autophagy-inflammation-cell death axis in organismal aging. Science 333:1109–1112. doi:10.1126/science.1201940
Greene AW, Grenier K, Aguileta MA et al (2012) Mitochondrial processing peptidase regulates PINK1 processing, import and Parkin recruitment. EMBO Rep 13:378–385. doi:10.1038/embor.2012.14
Griparic L, Kanazawa T, van der Bliek AM (2007) Regulation of the mitochondrial dynamin-like protein Opa1 by proteolytic cleavage. J Cell Biol 178:757–764. doi:10.1083/jcb.200704112
Ha Y (2009) Structure and mechanism of intramembrane protease. Semin Cell Dev Biol 20:240–250
Hamacher-Brady A, Brady NR (2016) Mitophagy programs: mechanisms and physiological implications of mitochondrial targeting by autophagy. Cell Mol Life Sci 73:775–795. doi:10.1007/s00018-015-2087-8
Hamon M-P, Bulteau A-L, Friguet B (2015) Mitochondrial proteases and protein quality control in ageing and longevity. Ageing Res Rev 23:56–66. doi:10.1016/j.arr.2014.12.010
Hansen J, Corydon TJ, Palmfeldt J et al (2008) Decreased expression of the mitochondrial matrix proteases Lon and ClpP in cells from a patient with hereditary spastic paraplegia (SPG13). Neuroscience 153:474–482. doi:10.1016/j.neuroscience.2008.01.070
Hartkamp J, Carpenter B, Roberts SGE (2010) The Wilms’ tumor suppressor protein WT1 is processed by the serine protease HtrA2/Omi. Mol Cell 37:159–171. doi:10.1016/j.molcel.2009.12.023
Haynes CM, Petrova K, Benedetti C et al (2007) ClpP mediates activation of a mitochondrial unfolded protein response in C. elegans. Dev Cell 13:467–480. doi:10.1016/j.devcel.2007.07.016
Haynes CM, Yang Y, Blais SP et al (2010) The matrix peptide exporter HAF-1 signals a mitochondrial UPR by activating the transcription factor ZC376.7 in C. elegans. Mol Cell 37:529–540. doi:10.1016/j.molcel.2010.01.015
Haynes CM, Fiorese CJ, Lin Y-F (2013) Evaluating and responding to mitochondrial dysfunction: the mitochondrial unfolded-protein response and beyond. Trends Cell Biol 23:311–318. doi:10.1016/j.tcb.2013.02.002
Head B, Griparic L, Amiri M et al (2009) Inducible proteolytic inactivation of OPA1 mediated by the OMA1 protease in mammalian cells. J Cell Biol 187:959–966. doi:10.1083/jcb.200906083
Heinitz S, Klein C, Djarmati A (2011) The p. S77N presenilin-associated rhomboid-like protein mutation is not a frequent cause of early-onset Parkinson’s disease. Mov Disord 26:2441–2442. doi:10.1002/mds.23889
Higgins JJ, Pucilowska J, Lombardi RQ, Rooney JP (2004) A mutation in a novel ATP-dependent Lon protease gene in a kindred with mild mental retardation. Neurology 63:1927–1931. doi:10.1212/01.WNL.0000146196.01316.A2
Hori O, Ichinoda F, Tamatani T et al (2002) Transmission of cell stress from endoplasmic reticulum to mitochondria. J Cell Biol 157:1151–1160. doi:10.1083/jcb.200108103
Jenkinson EM, Rehman AU, Walsh T et al (2013) Perrault syndrome is caused by recessive mutations in CLPP, encoding a mitochondrial ATP-dependent chambered protease. Am J Hum Genet 92:605–613. doi:10.1016/j.ajhg.2013.02.013
Jiang X, Jiang H, Shen Z, Wang X (2014) Activation of mitochondrial protease OMA1 by Bax and Bak promotes cytochrome c release during apoptosis. Proc Natl Acad Sci 111:14782–14787. doi:10.1073/pnas.1417253111
Jin SM, Lazarou M, Wang C et al (2010) Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J Cell Biol 191:933–942. doi:10.1083/jcb.201008084
Jobling RK, Assoum M, Gakh O et al (2015) PMPCA mutations cause abnormal mitochondrial protein processing in patients with non-progressive cerebellar ataxia. Brain 138:1505–1517. doi:10.1093/brain/awv057
Jovaisaite V, Mouchiroud L, Auwerx J (2014) The mitochondrial unfolded protein response, a conserved stress response pathway with implications in health and disease. J Exp Biol 217:137–143. doi:10.1242/jeb.090738
Kallergi E, Kalef-Ezra E, Karagouni-Dalakoura K, Tokatlidis K (2014) Common players in mitochondria biogenesis and neuronal protection against stress-induced apoptosis. Neurochem Res 39:546–555
Karlberg T, van den Berg S, Hammarström M et al (2009) Crystal structure of the ATPase domain of the human AAA+ protein paraplegin/SPG7. PLoS One 4, e6975. doi:10.1371/journal.pone.0006975
Kasashima K, Sumitani M, Endo H (2012) Maintenance of mitochondrial genome distribution by mitochondrial AAA+ protein ClpX. Exp Cell Res 318:2335–2343. doi:10.1016/j.yexcr.2012.07.012
Kaser M, Kambacheld M, Kisters-Woike B, Langer T (2003) Oma1, a novel membrane-bound metallopeptidase in mitochondria with activities overlapping with the m-AAA protease. J Biol Chem 278:46414–46423. doi:10.1074/jbc.M305584200
Khalimonchuk O, Jeong M-Y, Watts T et al (2012) Selective Oma1 protease-mediated proteolysis of Cox1 subunit of cytochrome oxidase in assembly mutants. J Biol Chem 287:7289–7300. doi:10.1074/jbc.M111.313148
Kondadi AK, Wang S, Montagner S et al (2014) Loss of the m-AAA protease subunit AFG3L2 causes mitochondrial transport defects and tau hyperphosphorylation. EMBO J 33:1011–1026. doi:10.1002/embj.201387009
Koppen M, Metodiev MD, Casari G et al (2007) Variable and tissue-specific subunit composition of mitochondrial m-AAA protease complexes linked to hereditary spastic paraplegia. Mol Cell Biol 27:758–767. doi:10.1128/MCB.01470-06
Koppen M, Bonn F, Ehses S, Langer T (2009) Autocatalytic processing of m-AAA protease subunits in mitochondria. Mol Biol Cell 20:4216–4224. doi:10.1091/mbc.E09-03-0218
Korwitz A, Merkwirth C, Richter-Dennerlein R et al (2016) Loss of OMA1 delays neurodegeneration by preventing stress-induced OPA1 processing in mitochondria. J Cell Biol 212:157–66. doi:10.1083/jcb.201507022
Krüger R, Sharma M, Riess O et al (2011) A large-scale genetic association study to evaluate the contribution of Omi/HtrA2 (PARK13) to Parkinson’s disease. Neurobiol Aging 32:548.e9–548.e18. doi:10.1016/j.neurobiolaging.2009.11.021
Lax NZ, Turnbull DM, Reeve AK, (2011) Mitochondrial mutations: newly discovered players in neuronal degeneration. Neurosciences 17:645–658. doi:10.1177/1073858410385469
Lee I, Suzuki CK (2008) Functional mechanics of the ATP-dependent Lon protease- lessons from endogenous protein and synthetic peptide substrates. Biochim Biophys Acta Protein Proteomics 1784:727–735. doi:10.1016/j.bbapap.2008.02.010
Leonhard K, Stiegler A, Neupert W, Langer T (1999) Chaperone-like activity of the AAA domain of the yeast Yme1 AAA protease. Nature 398:348–351. doi:10.1038/18704
Li W, Srinivasula SM, Chai J et al (2002) Structural insights into the pro-apoptotic function of mitochondrial serine protease HtrA2/Omi. Nat Struct Biol 9:436–441. doi:10.1038/nsb795
Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787–795. doi:10.1038/nature05292
Linssen WHJP, Van den Bent MJ, Brunner HG, Poels PJE (1994) Deafness, sensory neuropathy, and ovarian dysgenesis: a new syndrome or a broader spectrum of Perrault syndrome? Am J Med Genet 51:81–82. doi:10.1002/ajmg.1320510117
Liu T (2004) DNA and RNA binding by the mitochondrial Lon protease is regulated by nucleotide and protein substrate. J Biol Chem 279:13902–13910. doi:10.1074/jbc.M309642200
Livnat-Levanon N, Glickman MH (2011) Ubiquitin–proteasome system and mitochondria—reciprocity. Biochim Biophys Acta, Gene Regul Mech 1809:80–87. doi:10.1016/j.bbagrm.2010.07.005
Löbbe AM, Kang J-S, Hilker R et al (2014) A novel missense mutation in AFG3L2 associated with late onset and slow progression of spinocerebellar ataxia type 28. J Mol Neurosci 52:493–496. doi:10.1007/s12031-013-0187-1
Lu B, Yadav S, Shah PG et al (2007) Roles for the human ATP-dependent Lon protease in mitochondrial DNA maintenance. J Biol Chem 282:17363–17374. doi:10.1074/jbc.M611540200
Lu B, Lee J, Nie X et al (2013) Phosphorylation of human TFAM in mitochondria impairs DNA binding and promotes degradation by the AAA+ Lon protease. Mol Cell 49:121–132. doi:10.1016/j.molcel.2012.10.023
Maltecca F, Aghaie A, Schroeder DG et al (2008) The mitochondrial protease AFG3L2 is essential for axonal development. J Neurosci 28:2827–2836. doi:10.1523/JNEUROSCI.4677-07.2008
Maltecca F, Magnoni R, Cerri F et al (2009) Haploinsufficiency of AFG3L2, the gene responsible for spinocerebellar ataxia type 28, causes mitochondria-mediated Purkinje cell dark degeneration. J Neurosci 29:9244–9254. doi:10.1523/JNEUROSCI.1532-09.2009
Maltecca F, Baseggio E, Consolato F et al (2015) Purkinje neuron Ca2+ influx reduction rescues ataxia in SCA28 model. J Clin Invest 125:263–274. doi:10.1172/JCI74770
Mariotti C, Bella D Di, Di Donato S, Taroni F (2012) Spinocerebellar ataxia type 28. In: Handbook of clinical neurology. p 575–579
Martinelli P, La Mattina V, Bernacchia A et al (2009) Genetic interaction between the m-AAA protease isoenzymes reveals novel roles in cerebellar degeneration. Hum Mol Genet 18:2001–2013. doi:10.1093/hmg/ddp124
Matsuda N, Sato S, Shiba K et al (2010) PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J Cell Biol 189:211–221. doi:10.1083/jcb.200910140
Matsushima Y, Kaguni LS (2012) Matrix proteases in mitochondrial DNA function. Biochim Biophys Acta, Gene Regul Mech 1819:1080–1087. doi:10.1016/j.bbagrm.2011.11.008
Matsushima Y, Goto Y-I, Kaguni LS (2010) Mitochondrial Lon protease regulates mitochondrial DNA copy number and transcription by selective degradation of mitochondrial transcription factor A (TFAM). Proc Natl Acad Sci 107:18410–18415. doi:10.1073/pnas.1008924107
McDermott CJ, Dayaratne RK, Tomkins J et al (2001) Paraplegin gene analysis in hereditary spastic paraparesis (HSP) pedigrees in northeast England. Neurology 56:467–471. doi:10.1212/WNL.56.4.467
McDermott CJ, Taylor RW, Hayes C et al (2003) Investigation of mitochondrial function in hereditary spastic paraparesis. Neuroreport 14:485–488. doi:10.1097/01.wnr.0000058774.36017.cf
Meissner C, Lorenz H, Weihofen A et al (2011) The mitochondrial intramembrane protease PARL cleaves human Pink1 to regulate Pink1 trafficking. J Neurochem 117:856–867. doi:10.1111/j.1471-4159.2011.07253.x
Mishra P, Carelli V, Manfredi G, Chan DC (2014) Proteolytic cleavage of Opa1 stimulates mitochondrial inner membrane fusion and couples fusion to oxidative phosphorylation. Cell Metab 19:630–641. doi:10.1016/j.cmet.2014.03.011
Mlody B, Lorenz C, Inak G, Prigione A (2016) Energy metabolism in neuronal/glial induction and in iPSC models of brain disorders. Semin Cell Dev Biol 52:102–9. doi:10.1016/j.semcdb.2016.02.018
Moisoi N, Klupsch K, Fedele V et al (2009) Mitochondrial dysfunction triggered by loss of HtrA2 results in the activation of a brain-specific transcriptional stress response. Cell Death Differ 16:449–464. doi:10.1038/cdd.2008.166
Mossmann D, Meisinger C, Vögtle F-N (2012) Processing of mitochondrial presequences. Biochim Biophys Acta, Gene Regul Mech 1819:1098–1106. doi:10.1016/j.bbagrm.2011.11.007
Muona M, Berkovic SF, Dibbens LM et al (2014) A recurrent de novo mutation in KCNC1 causes progressive myoclonus epilepsy. Nat Genet 47:39–46. doi:10.1038/ng.3144
Musova Z, Kaiserova M, Kriegova E et al (2014) A novel frameshift mutation in the AFG3L2 gene in a patient with spinocerebellar ataxia. Cerebellum 13:331–337. doi:10.1007/s12311-013-0538-z
Myers KA, Warman Chardon J, Huang L, Boycott KM (2014) Deletion of AFG3L2 associated with spinocerebellar ataxia type 28 in the context of multiple genomic anomalies. Am J Med Genet A 164:3209–3212. doi:10.1002/ajmg.a.36771
Narendra DP, Jin SM, Tanaka A et al (2010) PINK1 is selectively stabilized on impaired mitochondria to activate parkin. PLoS Biol 8, e1000298. doi:10.1371/journal.pbio.1000298
Nargund AM, Pellegrino MW, Fiorese CJ et al (2012) Mitochondrial import efficiency of ATFS-1 regulates mitochondrial UPR activation. Science 337:587–590. doi:10.1126/science.1223560
Ngo JK, Davies KJA (2007) Importance of the Lon protease in mitochondrial maintenance and the significance of declining Lon in aging. Ann N Y Acad Sci 1119:78–87. doi:10.1196/annals.1404.015
Ngo JK, Davies KJA (2009) Mitochondrial Lon protease is a human stress protein. Free Radic Biol Med 46:1042–1048. doi:10.1016/j.freeradbiomed.2008.12.024
Nishi Y, Hamamoto K, Kajiyama M et al (1988) The Perrault syndrome: clinical report and review. Am J Med Genet 31:623–629. doi:10.1002/ajmg.1320310317
Nolden M, Ehses S, Koppen M et al (2005) The m-AAA protease defective in hereditary spastic paraplegia controls ribosome assembly in mitochondria. Cell 123:277–289. doi:10.1016/j.cell.2005.08.003
Pallister PD, Opitz JM, Lowry RB (1979) The Perrault syndrome: autosomal recessive ovarian dysgenesis with facultative, non-sex-limited sensorineural deafness. Am J Med Genet 4:239–246. doi:10.1002/ajmg.1320040306
Park LCH, Albers DS, Xu H et al (2001) Mitochondrial impairment in the cerebellum of the patients with progressive supranuclear palsy. J Neurosci Res 66:1028–1034. doi:10.1002/jnr.10062
Patterson VL, Zullo AJ, Koenig C et al (2014) Neural-specific deletion of Htra2 causes cerebellar neurodegeneration and defective processing of mitochondrial OPA1. PLoS One 9, e115789. doi:10.1371/journal.pone.0115789
Petek E, Schwarzbraun T, Noor A et al (2007) Molecular and genomic studies of IMMP2L and mutation screening in autism and Tourette syndrome. Mol Genet Genomics 277:71–81. doi:10.1007/s00438-006-0173-1
Pfeffer G, Gorman GS, Griffin H et al (2014) Mutations in the SPG7 gene cause chronic progressive external ophthalmoplegia through disordered mitochondrial DNA maintenance. Brain 137:1323–1336. doi:10.1093/brain/awu060
Pierson TM, Adams D, Bonn F et al (2011) Whole-exome sequencing identifies homozygous AFG3L2 mutations in a spastic ataxia-neuropathy syndrome linked to mitochondrial m-AAA proteases. PLoS Genet 7, e1002325. doi:10.1371/journal.pgen.1002325
Plun-Favreau H, Burchell VS, Holmström KM et al (2012) HtrA2 deficiency causes mitochondrial uncoupling through the F1F0-ATP synthase and consequent ATP depletion. Cell Death Dis 3, e335. doi:10.1038/cddis.2012.77
Pomatto LCD, Raynes R, Davies KJA (2016) The peroxisomal Lon protease LonP2 in aging and disease: functions and comparisons with mitochondrial Lon protease LonP1. Biol Rev n/a–n/a. doi: 10.1111/brv.12253
Potting C, Wilmes C, Engmann T et al (2010) Regulation of mitochondrial phospholipids by Ups1/PRELI-like proteins depends on proteolysis and Mdm35. EMBO J 29:2888–2898. doi:10.1038/emboj.2010.169
Quirós PM, Ramsay AJ, Sala D et al (2012) Loss of mitochondrial protease OMA1 alters processing of the GTPase OPA1 and causes obesity and defective thermogenesis in mice. EMBO J 31:2117–2133. doi:10.1038/emboj.2012.70
Quirós PM, Español Y, Acín-Pérez R et al (2014) ATP-dependent Lon protease controls tumor bioenergetics by reprogramming mitochondrial activity. Cell Rep 8:542–556. doi:10.1016/j.celrep.2014.06.018
Quirós PM, Langer T, López-Otín C (2015) New roles for mitochondrial proteases in health, ageing and disease. Nat Rev Mol Cell Biol 16:345–359. doi:10.1038/nrm3984
Rainbolt TK, Saunders JM, Wiseman RL (2015) YME1L degradation reduces mitochondrial proteolytic capacity during oxidative stress. EMBO Rep 16:97–106. doi:10.15252/embr.201438976
Ross OA, Soto AI, Vilariño-Güell C et al (2008) Genetic variation of Omi/HtrA2 and Parkinson’s disease. Parkinsonism Relat Disord 14:539–543. doi:10.1016/j.parkreldis.2008.08.003
Rowland LP, Shneider NA (2001) Amyotrophic lateral sclerosis. N Engl J Med 344:1688–1700. doi:10.1056/NEJM200105313442207
Ruan Y, Li H, Zhang K et al (2013) Loss of Yme1L perturbates mitochondrial dynamics. Cell Death Dis 4, e896. doi:10.1038/cddis.2013.414
Rugarli EI, Langer T (2012) Mitochondrial quality control: a matter of life and death for neurons. EMBO J 31:1336–1349. doi:10.1038/emboj.2012.38
Sánchez-Ferrero E, Coto E, Beetz C et al (2013) SPG7 mutational screening in spastic paraplegia patients supports a dominant effect for some mutations and a pathogenic role for p.A510V. Clin Genet 83:257–262. doi:10.1111/j.1399-0004.2012.01896.x
Saunders C, Smith L, Wibrand F et al (2015) CLPB variants associated with autosomal-recessive mitochondrial disorder with cataract, neutropenia, epilepsy, and methylglutaconic aciduria. Am J Hum Genet 96:258–265. doi:10.1016/j.ajhg.2014.12.020
Scharfenberg F, Serek-Heuberger J, Coles M et al (2015) Structure and evolution of N-domains in AAA metalloproteases. J Mol Biol 427:910–923. doi:10.1016/j.jmb.2014.12.024
Schlipf N, Schüle R, Klimpe S et al (2011) Amplicon-based high-throughput pooled sequencing identifies mutations in CYP7B1 and SPG7 in sporadic spastic paraplegia patients. Clin Genet 80:148–160. doi:10.1111/j.1399-0004.2011.01715.x
Schreiner B, Westerburg H, Forne I et al (2012) Role of the AAA protease Yme1 in folding of proteins in the intermembrane space of mitochondria. Mol Biol Cell 23:4335–4346. doi:10.1091/mbc.E12-05-0420
Sekine S, Kanamaru Y, Koike M et al (2012) Rhomboid protease PARL mediates the mitochondrial membrane potential loss-induced cleavage of PGAM5. J Biol Chem 287:34635–34645. doi:10.1074/jbc.M112.357509
Settasatian C, Whitmore SA, Crawford J et al (1999) Genomic structure and expression analysis of the spastic paraplegia gene, SPG7. Hum Genet 105:139–44
Shi G, Lee JR, Grimes DA et al (2011) Functional alteration of PARL contributes to mitochondrial dysregulation in Parkinson’s disease. Hum Mol Genet 20:1966–1974. doi:10.1093/hmg/ddr077
Smets K, Deconinck T, Baets J et al (2014) Partial deletion of AFG3L2 causing spinocerebellar ataxia type 28. Neurology 82:2092–2100. doi:10.1212/WNL.0000000000000491
Song Z, Chen H, Fiket M et al (2007) OPA1 processing controls mitochondrial fusion and is regulated by mRNA splicing, membrane potential, and Yme1L. J Cell Biol 178:749–755. doi:10.1083/jcb.200704110
Sosna J, Voigt S, Mathieu S et al (2013) The proteases HtrA2/Omi and UCH-L1 regulate TNF-induced necroptosis. Cell Commun Signal 11:76. doi:10.1186/1478-811X-11-76
Stiburek L, Zeman J (2010) Assembly factors and ATP-dependent proteases in cytochrome c oxidase biogenesis. Biochim Biophys Acta Bioenerg 1797:1149–1158. doi:10.1016/j.bbabio.2010.04.006
Stiburek L, Cesnekova J, Kostkova O et al (2012) YME1L controls the accumulation of respiratory chain subunits and is required for apoptotic resistance, cristae morphogenesis, and cell proliferation. Mol Biol Cell 23:1010–1023. doi:10.1091/mbc.E11-08-0674
Strauss KM, Martins LM, Plun-Favreau H et al (2005) Loss of function mutations in the gene encoding Omi/HtrA2 in Parkinson’s disease. Hum Mol Genet 14:2099–2111. doi:10.1093/hmg/ddi215
Sun L, Li X, Shi Y (2016) Structural biology of intramembrane proteases: mechanistic insights from rhomboid and S2P to γ-secretase. Curr Opin Struct Biol 37:97–107. doi:10.1016/j.sbi.2015.12.008
Suzuki Y, Imai Y, Nakayama H et al (2001) A serine protease, HtrA2, is released from the mitochondria and interacts with XIAP, inducing cell death. Mol Cell 8:613–21
Tabrizi SJ, Cleeter MWJ, Xuereb J et al (1999) Biochemical abnormalities and excitotoxicity in Huntington’s disease brain. Ann Neurol 45:25–32. doi:10.1002/1531-8249(199901)45:1<25::AID-ART6>3.0.CO;2-E
Teixeira PF, Glaser E (2013) Processing peptidases in mitochondria and chloroplasts. Biochim Biophys Acta, Mol Cell Res 1833:360–370. doi:10.1016/j.bbamcr.2012.03.012
Ugarte N, Petropoulos I, Friguet B (2010) Oxidized mitochondrial protein degradation and repair in aging and oxidative stress. Antioxid Redox Signal 13:539–549. doi:10.1089/ars.2009.2998
Unal Gulsuner H, Gulsuner S, Mercan FN et al (2014) Mitochondrial serine protease HTRA2 p.G399S in a kindred with essential tremor and Parkinson disease. Proc Natl Acad Sci 111:18285–18290. doi:10.1073/pnas.1419581111
van Gassen KLI, van der Heijden CDCC, de Bot ST et al (2012) Genotype-phenotype correlations in spastic paraplegia type 7: a study in a large Dutch cohort. Brain 135:2994–3004. doi:10.1093/brain/aws224
Venkatesh S, Lee J, Singh K et al (2012) Multitasking in the mitochondrion by the ATP-dependent Lon protease. Biochim Biophys Acta, Mol Cell Res 1823:56–66. doi:10.1016/j.bbamcr.2011.11.003
Vives-Bauza C, Zhou C, Huang Y et al (2010) PINK1-dependent recruitment of Parkin to mitochondria in mitophagy. Proc Natl Acad Sci 107:378–383. doi:10.1073/pnas.0911187107
Voos W (2009) Mitochondrial protein homeostasis: the cooperative roles of chaperones and proteases. Res Microbiol 160:718–725. doi:10.1016/j.resmic.2009.08.003
Wai T, Garcia-Prieto J, Baker MJ et al (2015) Imbalanced OPA1 processing and mitochondrial fragmentation cause heart failure in mice. Science 350:aad0116–aad0116. doi:10.1126/science.aad0116
Wallace DC (2013) A mitochondrial bioenergetic etiology of disease. J Clin Invest 123:1405–1412. doi:10.1172/JCI61398
Warnecke T, Duning T, Schwan A et al (2007) A novel form of autosomal recessive hereditary spastic paraplegia caused by a new SPG7 mutation. Neurology 69:368–75. doi:10.1212/01.wnl.0000266667.91074.fe
Watabe S, Kohno H, Kouyama H et al (1994) Purification and characterization of a substrate protein for mitochondrial ATP-dependent protease in bovine adrenal cortex. J Biochem 115:648–54
Wedding IM, Koht J, Tran GT et al (2014) Spastic paraplegia type 7 is associated with multiple mitochondrial DNA deletions. PLoS One 9, e86340. doi:10.1371/journal.pone.0086340
Wider C, Wszolek ZK (2008) Etiology and pathophysiology of frontotemporal dementia, Parkinson disease and Alzheimer disease: lessons from genetic studies. Neurodegener Dis 5:122–125. doi:10.1159/000113680
Wilkinson PA, Crosby AH, Turner C et al (2004) A clinical, genetic and biochemical study of SPG7 mutations in hereditary spastic paraplegia. Brain 127:973–80. doi:10.1093/brain/awh125
Wortmann SB, Ziętkiewicz S, Kousi M et al (2015) CLPB mutations cause 3-methylglutaconic aciduria, progressive brain atrophy, intellectual disability, congenital neutropenia, cataracts, movement disorder. Am J Hum Genet 96:245–257. doi:10.1016/j.ajhg.2014.12.013
Wu S-B, Ma Y-S, Wu Y-T et al (2010) Mitochondrial DNA mutation-elicited oxidative stress, oxidative damage, and altered gene expression in cultured cells of patients with MERRF syndrome. Mol Neurobiol 41:256–266. doi:10.1007/s12035-010-8123-7
Wüst R, Maurer B, Hauser K et al (2015) Mutation analyses and association studies to assess the role of the presenilin-associated rhomboid-like gene in Parkinson’s disease. Neurobiol Aging. doi:10.1016/j.neurobiolaging.2015.11.025
Xiao X, Hu Y, Quiros PM et al (2014) OMA1 mediates OPA1 proteolysis and mitochondrial fragmentation in experimental models of ischemic kidney injury. AJP Ren Physiol 306:F1318–F1326. doi:10.1152/ajprenal.00036.2014
Xin W, Xiaohua N, Peilin C et al (2008) Primary function analysis of human mental retardation related gene CRBN. Mol Biol Rep 35:251–256. doi:10.1007/s11033-007-9077-3
Yacobi-Sharon K, Namdar Y, Arama E (2013) Alternative germ cell death pathway in drosophila involves HtrA2/Omi, lysosomes, and a caspase-9 counterpart. Dev Cell 25:29–42. doi:10.1016/j.devcel.2013.02.002
Yamaguchi O, Murakawa T, Nishida K, Otsu K (2016) Receptor-mediated mitophagy. J Mol Cell Cardiol. doi:10.1016/j.yjmcc.2016.03.010
Yoshioka H, Katsu M, Sakata H et al (2013) The role of PARL and HtrA2 in striatal neuronal injury after transient global cerebral ischemia. J Cereb Blood Flow Metab 33:1658–1665. doi:10.1038/jcbfm.2013.139
Zhang K, Li H, Song Z (2014) Membrane depolarization activates the mitochondrial protease OMA1 by stimulating self-cleavage. EMBO Rep 15:576–585. doi:10.1002/embr.201338240
Zhao Q, Wang J, Levichkin IV et al (2002) A mitochondrial specific stress response in mammalian cells. EMBO J 21:4411–4419. doi:10.1093/emboj/cdf445
Zühlke C, Mikat B, Timmann D et al (2015) Spinocerebellar ataxia 28: a novel AFG3L2 mutation in a German family with young onset, slow progression and saccadic slowing. Cerebellum & Ataxias 2:19. doi:10.1186/s40673-015-0038-7
Acknowledgements
We apologize to those authors whose work we were unable to cite due to space constraints. We also would like to thank members of the Khalimonchuk lab and Dr. Donald Becker for useful comments. This work was supported, in whole or in part, by the National Institutes of Health grants R01 GM108975 (to O.K.), P30GM103335 (to Nebraska Redox Biology Center). E.M.G is a trainee of the Molecular Mechanisms of Disease predoctoral program supported by the NIH training grant 1T32GM107001-01A1.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Rights and permissions
About this article
Cite this article
Levytskyy, R.M., Germany, E.M. & Khalimonchuk, O. Mitochondrial Quality Control Proteases in Neuronal Welfare. J Neuroimmune Pharmacol 11, 629–644 (2016). https://doi.org/10.1007/s11481-016-9683-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11481-016-9683-8