[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Broadband Optical Reflection Modulator in Indium-Tin-Oxide-Filled Hybrid Plasmonic Waveguide with High Modulation Depth

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

A surface plasmon resonance (SPR)-based optical reflection modulator consisting of vertically stacked silica-silicon-HfO2-ITO-HfO2-Ag-prism multilayer is proposed and numerically investigated. The free carrier-concentration-dependent permittivity of indium-tin-oxide (ITO) at the HfO2/ITO interface induces an epsilon-near-zero (ENZ) effect contributing to strong field enhancement and modifies the SPR condition of incident light. With optimal geometry parameters and proper design of carrier concentration at the accumulation layer, modulation depth (MD) of ~100% and insertion loss (IL) of 3.7% can be simultaneously achieved. The IL can be further reduced by engineering silicon layer thickness. Moreover, the device offers a broadband operation wavelength from 1.5 to 1.6 μm with the variations of MD and IL smaller than 4 and 3%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Oulton RF, Sorger VJ, Genov DA, Pile DFP, Zhang X (2008) A hybrid plasmonic waveguide for subwavelength confinment and long range propagation. Nat Photon 7:496–500

    Article  CAS  Google Scholar 

  2. Huang C, Lamond RJ, Pickus SK, Li ZR, Sorger VJ (2013) A sub-λ modulator beyond the efficiency-loss limit. IEEE Photon J 5:2202411

    Article  CAS  Google Scholar 

  3. Dionne JA, Diest K, Sweatlock LA, Atwater HA (2009) PlasMOStor: a metal-Ox-Si field effect plasmonic modulator. Nano Lett 9:897–902

    Article  CAS  PubMed  Google Scholar 

  4. Cai W, White JS, Brongersma ML (2009) Compact, high-speed and power-efficient electrooptic plasmonic modulators. Nano Lett 9:4403–4411

    Article  CAS  PubMed  Google Scholar 

  5. Lee HW, Papadakis G, Burgos SP, Chander K, Kriesch A, Pala R, Peschel U, Atwater HA (2014) Nanoscale conducting oxide PlasMOStor. Nano Lett 14:6463–6468

    Article  CAS  PubMed  Google Scholar 

  6. Jin L, Chen Q, Liu W, Song S (2016) Electro-absorption modulator with dual carrier accumulation layers based on epsilon-near-zero ITO. Plasmonics 11:1087–1092

    Article  CAS  Google Scholar 

  7. Baek J, You JB, Yu K (2015) Free-carrier electro-refraction modulation based on a silicon slot waveguide with ITO. Opt Express 23:15863–15876

    Article  CAS  PubMed  Google Scholar 

  8. Karsavin AV, Zayats AV (2012) Photonic signal processing on electriconic scales: electro-optical field-effect nanoplasmonic modulator. Phy Rev Lett 109:053901

    Article  CAS  Google Scholar 

  9. Melikyan A, Lindenmann N, Walheim S, Leufke PM, Ulrich S, Ye J, Vincze P, Hahn H, Schimmel T, Koos C, Freude W, Leuthold J (2011) Surface plasmon polariton absorption modulator. Opt Express 9:8855–8869

    Article  CAS  Google Scholar 

  10. Ye C, Khan S, Li ZR, Simsek E, Sorger VJ (2014) λ-size ITO and graphene-based electro-optic modulators on SOI. IEEE J. Sel. Top. Quantum electron 20:3400310

    Google Scholar 

  11. Kim JT (2014) CMOS-compatible hybrid plasmonic modulator based on vanadium dioxide insulator-metal phase transition. Opt Lett 39:3997–4000

    Article  CAS  PubMed  Google Scholar 

  12. Sweatlock LA, Diest K (2012) Vanadium dioxide based plasmonic modulators. Opt Express 20:8700–8709

    Article  CAS  PubMed  Google Scholar 

  13. Briggs RM, Pryce IM, Atwater HA (2010) Compact silicon photonic waveguide modulator based on the vanadium dioxide metal-insulator phase transition. Opt Express 18:11192–11201

    Article  CAS  PubMed  Google Scholar 

  14. Kleine-Ostmann T, Dawson P, Pierz K, Hein G, Koch M (2004) Room-temperature operation of an electrically driven terahertz modulator. Appl Phys Lett 84:3555–3557

    Article  CAS  Google Scholar 

  15. Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel HA, Liang X, Zettl A, Shen YR, Wang F (2011) Graphene plasmonics for tunable terahertz metamaterials. Nat Nanotechnol 6:630–634

    Article  CAS  PubMed  Google Scholar 

  16. Zhu W, Rukhlenko ID, Premaratne M (2013) Graphene metamaterial for optical reflection modulation. Appl Phys Lett 102:241914

    Article  CAS  Google Scholar 

  17. Kinsey N, Devault C, Kim J, Fererra M, Shalaev VM, Bolatasseva A (2015) Epsilon-near-zero Al-doped ZnO for ultrafast switching at telecom wavelengths. Optica 2:616–622

    Article  CAS  Google Scholar 

  18. Kim M, Jeong CY, Heo H, Kim S (2015) Optical reflection modulation using surface plasmon resonance in a graphene-embeded hybrid plasmonic waveguide at an optical communication wavelength. Opt Lett 40:871–874

    Article  CAS  PubMed  Google Scholar 

  19. Luo J, Xu P, Gao L, Lai Y, Chen H (2012) Manipulate the transmissions using index-near-zero or epsilon-near-zero metamaterials with coated defects. Plasmonics 7:353–358

    Article  Google Scholar 

  20. Huang T (2016) TE-pass polarizer based on epsilon-near-zero material embedded in a slot waveguide. IEEE Photon Technol Lett 28:2145–2148

    Article  CAS  Google Scholar 

  21. Moaied M, Yajiadda MMA, Ostrikov K (2015) Quantum effects of nonlocal plasmons in epsilon-near-zero properties of a thin gold film slab. Plasmonics 10:1615–1623

    Article  CAS  Google Scholar 

  22. Zeng S, Hu S, Xia J, Anderson T, Dinh XQ, Meng X, Coquet P, Yong KT (2015) Graphene-MoS2 hybrid nanostrutures enhanced surface plasmon resonace biosensors. Sensors Actuators B Chem 207:801–810

    Article  CAS  Google Scholar 

  23. Fleming JW (1984) Dispersion in GeO2-SiO2 glasses. App Opt 23:4486–4493

    Article  CAS  Google Scholar 

  24. Palik ED (1998) Handbook of optical constants of solids. Academic, San Diego

    Google Scholar 

  25. Homola J, Surface plasmon resonance based sensors, Springer 2006

  26. Capretti A, Wang Y, Engheta N, Negro LD (2015) Enhanced third-harmonic generation in Si-compatible epslion-near-zero indium tin oxide nanolayers. Opt Lett 40:1500–1503

    Article  CAS  PubMed  Google Scholar 

  27. Miller DAB (2012) Energy consumption in optical modulators for interconnects. Opt Express 20:A293–A308

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China (61605179), the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) (162301132703, G1323511665), and the 863 High Technology Plan (2015AA015502).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianye Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, L., Ding, H., Huang, T. et al. Broadband Optical Reflection Modulator in Indium-Tin-Oxide-Filled Hybrid Plasmonic Waveguide with High Modulation Depth. Plasmonics 13, 1309–1314 (2018). https://doi.org/10.1007/s11468-017-0634-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-017-0634-x

Keywords

Navigation