[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Sampling theorem of Hermite type and aliasing error on the Sobolev class of functions

  • Research Article
  • Published:
Frontiers of Mathematics in China Aims and scope Submit manuscript

Abstract

Denote by B 2σ,p (1 < p < ∞) the bandlimited class p-integrable functions whose Fourier transform is supported in the interval [−σ, σ]. It is shown that a function in B 2σ,p can be reconstructed in L p(ℝ) by its sampling sequences {f (κπ / σ)} κ∈ℤ and {f’ (κπ / σ)} κ∈ℤ using the Hermite cardinal interpolation. Moreover, it will be shown that if f belongs to L r p (ℝ), 1 < p < ∞, then the exact order of its aliasing error can be determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nikolskii S. M., Approximation of Functions of Several Variables and Embedding Theorems, New York: Springer-Verlag, 1975

    Google Scholar 

  2. Levin B. Ya., Lectures on Entire Functions, American Mathematical Society, Providence, 1996.

    MATH  Google Scholar 

  3. Shanon C. E., A mathematical theory of communication, Bell System Tech., 1948, 27:379–423

    MathSciNet  Google Scholar 

  4. Whittaker J. M., Interpolatory Function Theory, Cambridge: Cambridge Univ. Press, 1935.

    Google Scholar 

  5. Butzer P. L., A survey of the Whattaker-Shannon sampling theorem and some of its extension, J. Math. Res. Exposition, 1983, 3: 185–212

    MathSciNet  Google Scholar 

  6. Butzer P. L. and Splettst W. össer, A sampling theorem for duration-limited functions with error estimates, Inform. and Control, 1977, 34: 55–65

    Article  MATH  Google Scholar 

  7. Butzer P. L. and Stens R. L., The Euler-MacLaurin summation formula, the sampling theorem, and approximate integration over the real axis, Linear Algebra Appl., 1983, 52/53:141–155

    MathSciNet  Google Scholar 

  8. Butzer P. L. and Stens R. L., Sampling theorem for not necessarily band-limited functions: A Historical overview, SIAM Rev., 1992, 34: 40–53

    Article  MathSciNet  MATH  Google Scholar 

  9. Brown J. L., Jr., On the error estimates in reconstructing a non-bandlimited function by means of the bandpass sampling theorem, J. Math. Anal. Appl., 1967, 18: 75–84

    Article  MathSciNet  Google Scholar 

  10. Fang G. S., Whittaker-Kotelnikov-Shannon sampling theorem and aliasing error, J. Approx. Theory, 1996, 85: 115–131

    Article  MATH  MathSciNet  Google Scholar 

  11. Fogel L. J., A note on the sampling theorem, IRE Trans. Inform. Theory, 1955, 1: 47–48

    Article  Google Scholar 

  12. Jagerman D. L. and Fogel L.J., Some general aspects of the sampling theorem, IEEE Trans. Inform. Theorem, 1956, 2: 139–156

    Article  Google Scholar 

  13. Higgins J. R., Five short stories about the cardinal series, Bull. Amer. Math. Soc., 1985, 12: 49–89

    Article  MathSciNet  Google Scholar 

  14. Hinsen G., Irregular Sampling of Bandlimited L p—functions, J. Approx. Theory, 1993, 72: 346–364

    Article  MATH  MathSciNet  Google Scholar 

  15. Kress R., On the general Hermite cardinal interpolation, Mathematic of Computation, 1972, 26: 925–933

    Article  MATH  MathSciNet  Google Scholar 

  16. Zygmund A., Trigonometric Series, Vol. II. 2nd ed., Cambridge: Cambridge Univ. Press

  17. Magaril-Il’yaev G. G., Average dimension, widths and optimal recovery of Sobolev classes on the whole line. Mat. Sb., 1991, 182: 1635–1656

    Google Scholar 

  18. Marsden M. J., Richards F.B. and Riemenschneider S. D., Cardinal spline interpolation operators on L p data. Indiana Univ. Math. J., 1975, 24: 677–689

    Article  MathSciNet  MATH  Google Scholar 

  19. Boas R. P., Jr., Entire Functions, New York: Academic Press, 1954

    MATH  Google Scholar 

  20. Rahmam Q. I. and Vértesi P., On the L p convergence of Lagrange interpolating entire functions of exponential type, J. Approx. Theory, 1992, 69: 302–317

    Article  MathSciNet  Google Scholar 

  21. Fang G. S., Approximating properties of entire functions of exponential type, J. Math. Anal., 1996, 201: 642–659

    Article  MATH  Google Scholar 

  22. Timan A. F., Theory of Approximation of Functions of a Real Variable, Oxford: Pergamon, 1963

    MATH  Google Scholar 

  23. Gervais R. P. and Rahman Q.I., An extension of Carlson’s theorem for entire functions exponential type, Trans. Amer. Math. Soc., 1978, 235: 387–394

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Hu-an.

Additional information

Project supported by the Scientific Research Common Program of Beijing Municipal Commission of Education under grant number KM 200410009010 and by the Natural Science Foundation of China under grant number 10071006

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Ha., Fang, Gs. Sampling theorem of Hermite type and aliasing error on the Sobolev class of functions. Front. Math. China 1, 252–271 (2006). https://doi.org/10.1007/s11464-006-0006-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11464-006-0006-x

Keywords

MSC

Navigation