Abstract
Denote by B 2σ,p (1 < p < ∞) the bandlimited class p-integrable functions whose Fourier transform is supported in the interval [−σ, σ]. It is shown that a function in B 2σ,p can be reconstructed in L p(ℝ) by its sampling sequences {f (κπ / σ)} κ∈ℤ and {f’ (κπ / σ)} κ∈ℤ using the Hermite cardinal interpolation. Moreover, it will be shown that if f belongs to L r p (ℝ), 1 < p < ∞, then the exact order of its aliasing error can be determined.
Similar content being viewed by others
References
Nikolskii S. M., Approximation of Functions of Several Variables and Embedding Theorems, New York: Springer-Verlag, 1975
Levin B. Ya., Lectures on Entire Functions, American Mathematical Society, Providence, 1996.
Shanon C. E., A mathematical theory of communication, Bell System Tech., 1948, 27:379–423
Whittaker J. M., Interpolatory Function Theory, Cambridge: Cambridge Univ. Press, 1935.
Butzer P. L., A survey of the Whattaker-Shannon sampling theorem and some of its extension, J. Math. Res. Exposition, 1983, 3: 185–212
Butzer P. L. and Splettst W. össer, A sampling theorem for duration-limited functions with error estimates, Inform. and Control, 1977, 34: 55–65
Butzer P. L. and Stens R. L., The Euler-MacLaurin summation formula, the sampling theorem, and approximate integration over the real axis, Linear Algebra Appl., 1983, 52/53:141–155
Butzer P. L. and Stens R. L., Sampling theorem for not necessarily band-limited functions: A Historical overview, SIAM Rev., 1992, 34: 40–53
Brown J. L., Jr., On the error estimates in reconstructing a non-bandlimited function by means of the bandpass sampling theorem, J. Math. Anal. Appl., 1967, 18: 75–84
Fang G. S., Whittaker-Kotelnikov-Shannon sampling theorem and aliasing error, J. Approx. Theory, 1996, 85: 115–131
Fogel L. J., A note on the sampling theorem, IRE Trans. Inform. Theory, 1955, 1: 47–48
Jagerman D. L. and Fogel L.J., Some general aspects of the sampling theorem, IEEE Trans. Inform. Theorem, 1956, 2: 139–156
Higgins J. R., Five short stories about the cardinal series, Bull. Amer. Math. Soc., 1985, 12: 49–89
Hinsen G., Irregular Sampling of Bandlimited L p—functions, J. Approx. Theory, 1993, 72: 346–364
Kress R., On the general Hermite cardinal interpolation, Mathematic of Computation, 1972, 26: 925–933
Zygmund A., Trigonometric Series, Vol. II. 2nd ed., Cambridge: Cambridge Univ. Press
Magaril-Il’yaev G. G., Average dimension, widths and optimal recovery of Sobolev classes on the whole line. Mat. Sb., 1991, 182: 1635–1656
Marsden M. J., Richards F.B. and Riemenschneider S. D., Cardinal spline interpolation operators on L p data. Indiana Univ. Math. J., 1975, 24: 677–689
Boas R. P., Jr., Entire Functions, New York: Academic Press, 1954
Rahmam Q. I. and Vértesi P., On the L p convergence of Lagrange interpolating entire functions of exponential type, J. Approx. Theory, 1992, 69: 302–317
Fang G. S., Approximating properties of entire functions of exponential type, J. Math. Anal., 1996, 201: 642–659
Timan A. F., Theory of Approximation of Functions of a Real Variable, Oxford: Pergamon, 1963
Gervais R. P. and Rahman Q.I., An extension of Carlson’s theorem for entire functions exponential type, Trans. Amer. Math. Soc., 1978, 235: 387–394
Author information
Authors and Affiliations
Corresponding author
Additional information
Project supported by the Scientific Research Common Program of Beijing Municipal Commission of Education under grant number KM 200410009010 and by the Natural Science Foundation of China under grant number 10071006
Rights and permissions
About this article
Cite this article
Li, Ha., Fang, Gs. Sampling theorem of Hermite type and aliasing error on the Sobolev class of functions. Front. Math. China 1, 252–271 (2006). https://doi.org/10.1007/s11464-006-0006-x
Issue Date:
DOI: https://doi.org/10.1007/s11464-006-0006-x
Keywords
- Marcinkiewicz type inequality
- bandlimited function
- derivative sampling
- Sobolev classes of functions
- aliasing error