[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Micro-mechanical analysis of soil–structure interface behavior under constant normal stiffness condition with DEM

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

The mechanical behavior at soil–structure interface (SSI) has a crucial influence on the safety and stability of geotechnical structures. However, the behavior of SSI under constant normal stiffness condition from micro- to macro-scale receives little attention. In this study, the frictional characteristics of SSI and the associated displacement localization under constant normal stiffness condition are investigated at both macro- and microscales by simulating a series of interface shear tests with discrete element method. The algorithm to achieve a constant normal stiffness is first developed. The macroscopic mechanical response of the interface shear tests with both loose and dense specimens at various normal stiffness is discussed in terms of shear stress, normal stress, vertical displacement, horizontal displacement and stress ratio. Then, the microscopic behaviors and properties, including shear zone formation, localized void ratio, coordination number, force chains and soil fabric, are investigated. The effect of normal stiffness is thus clarified at both macro- and microscales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Afzali-Nejad A, Lashkari A, Shourijeh PT (2017) Influence of particle shape on the shear strength and dilation of sand-woven geotextile interfaces. Geotext Geomembranes 45(1):54–66. https://doi.org/10.1016/j.geotexmem.2016.07.005

    Article  Google Scholar 

  2. Ai J, Chen JF, Rotter JM, Ooi JY (2011) Assessment of rolling resistance models in discrete element simulations. Powder Technol 206(3):269–282. https://doi.org/10.1016/j.powtec.2010.09.030

    Article  Google Scholar 

  3. Alshibli KA, Sture S (2000) Shear band formation in plane strain experiments of sand. J Geotech Geoenviron 126(6):495–503. https://doi.org/10.1061/(Asce)1090-0241(2000)126:6(495)

    Article  Google Scholar 

  4. Asadzadeh M, Soroush A (2016) Fundamental investigation of constant stress simple shear test using DEM. Powder Technol 292:129–139. https://doi.org/10.1016/j.powtec.2016.01.029

    Article  Google Scholar 

  5. Barnett N, Rahman MM, Karim MR, Nguyen HBK (2020) Evaluating the particle rolling effect on the characteristic features of granular material under the critical state soil mechanics framework. In: Granular Matter vol 4 Springer, pp 1–24. https://doi.org/10.1007/s10035-020-01055-5

  6. Boukpeti N, White DJ (2017) Interface shear box tests for assessing axial pipe-soil resistance. Geotechnique 67(1):18–30. https://doi.org/10.1680/jgeot.15.P.112

    Article  Google Scholar 

  7. Cao S, Xue G, Yilmaz E, Yin Z, Yang F (2020) Utilizing concrete pillars as an environmental mining practice in underground mines. J Clean Prod 278:123433. https://doi.org/10.1016/j.jclepro.2020.123433

    Article  Google Scholar 

  8. Cerfontaine B, Dieudonné AC, Radu JP, Collin F, Charlier R (2015) 3D zero-thickness coupled interface finite element: formulation and application. Comput Geotech 69:124–140. https://doi.org/10.1016/j.compgeo.2015.04.016

    Article  Google Scholar 

  9. Chang CS, Yin ZY, Hicher PY (2011) Micromechanical analysis for interparticle and assembly instability of sand. J Eng Mech 137(3):155–168. https://doi.org/10.1061/(Asce)Em.1943-7889.0000204

    Article  Google Scholar 

  10. Chen W-B, Zhou W-H, dos Santos JA (2020) Analysis of consistent soil–structure interface response in multi–directional shear tests by discrete element modeling. Transp Geotech 24:100379. https://doi.org/10.1016/j.trgeo.2020.100379

    Article  Google Scholar 

  11. Cheung G, O’Sullivan C (2008) Effective simulation of flexible lateral boundaries in two- and three-dimensional DEM simulations. Particuology 6(6):483–500. https://doi.org/10.1016/j.partic.2008.07.018

    Article  Google Scholar 

  12. Cundall PA (1971) A computer model for simulating progressive, large-scale movement in blocky rock system. In: proceedings of the international symposium on rock mechanics

  13. Daouadji A, Darve F, Al Gali H, Hicher PY, Laouafa F, Lignon S, Nicot F, Nova R, Pinheiro M, Prunier F, Sibille L, Wan R (2011) Diffuse failure in geomaterials: experiments, theory and modelling. Int J Numer Anal Met 35(16):1731–1773. https://doi.org/10.1002/nag.975

    Article  Google Scholar 

  14. DeJong JT, Randolph MF, White DJ (2003) Interface load transfer degradation during cyclic loading: a microscale investigation. Soils Found 43(4):81–93. https://doi.org/10.3208/sandf.43.4_81

    Article  Google Scholar 

  15. DeJong JT, Westgate ZJ (2009) Role of initial state, material properties, and confinement condition on local and global soil-structure interface behavior. J Geotech Geoenviron 135(11):1646–1660. https://doi.org/10.1061/(Asce)1090-0241(2009)135:11(1646)

    Article  Google Scholar 

  16. DeJong JT, White DJ, Randolph MF (2006) Microscale observation and modeling of soil-structure interface behavior using particle image velocimetry. Soils Found 46(1):15–28. https://doi.org/10.3208/sandf.46.15

    Article  Google Scholar 

  17. Dolbow J, Harari I (2009) An efficient finite element method for embedded interface problems. Int J Numer Meth Eng 78(2):229–252. https://doi.org/10.1002/nme.2486

    Article  MathSciNet  MATH  Google Scholar 

  18. Eid HT, Amarasinghe RS, Rabie KH, Wijewickreme D (2015) Residual shear strength of fine-grained soils and soil-solid interfaces at low effective normal stresses. Can Geotech J 52(2):198–210. https://doi.org/10.1139/cgj-2014-0019

    Article  Google Scholar 

  19. Evgin E, Fakharian K (1996) Effect of stress paths on the behaviour of sand-steel interfaces. Can Geotech J 33(6):853–865. https://doi.org/10.1139/t96-116-336

    Article  Google Scholar 

  20. Feng S-J, Chen J-N, Chen H-X, Liu X, Zhao T, Zhou A (2020) Analysis of sand–woven geotextile interface shear behavior using discrete element method (DEM). Can Geotech J 57(3):433–447. https://doi.org/10.1139/cgj-2018-0703

    Article  Google Scholar 

  21. Fleischmann JA, Plesha ME, Drugan WJ (2013) Quantitative comparison of two-dimensional and three-dimensional discrete-element simulations of nominally two-dimensional shear flow. Int J Geomech 13(3):205–212. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000202

    Article  Google Scholar 

  22. Frost JD, DeJong JT, Recalde M (2002) Shear failure behavior of granular-continuum interfaces. Eng Fract Mech 69(17):2029–2048. https://doi.org/10.1016/S0013-7944(02)00075-9

    Article  Google Scholar 

  23. Gao ZW, Zhao JD (2013) Strain localization and fabric evolution in sand. Int J Solids Struct 50(22–23):3634–3648. https://doi.org/10.1016/j.ijsolstr.2013.07.005

    Article  Google Scholar 

  24. Goldenberg C, Goldhirsch I (2005) Friction enhances elasticity in granular solids. Nature 435(7039):188–191

    Article  Google Scholar 

  25. Gomez JE, Filz GM, Ebeling RM (2003) Extended hyperbolic model for sand-to-concrete interfaces. J Geotech Geoenviron 129(11):993–1000. https://doi.org/10.1061/(Asce)1090-0241(2003)129:11(993)

    Article  Google Scholar 

  26. Grabowski A, Nitka M, Tejchman J (2021) 3D DEM simulations of monotonic interface behaviour between cohesionless sand and rigid wall of different roughness. Acta Geotech 16(4):1001–1026. https://doi.org/10.1007/s11440-020-01085-6

    Article  Google Scholar 

  27. Gu XQ, Chen YW, Huang MS (2017) Critical state shear behavior of the soil-structure interface determined by discrete element modeling. Particuology 35:68–77. https://doi.org/10.1016/j.partic.2017.02.002

    Article  Google Scholar 

  28. Hamid TB, Miller GA (2009) Shear strength of unsaturated soil interfaces. Can Geotech J 46(5):595–606. https://doi.org/10.1139/T09-002

    Article  Google Scholar 

  29. He X, Wu W, Cai G, Qi J, Kim JR, Zhang D, Jiang M (2020) Work–energy analysis of granular assemblies validates and calibrates a constitutive model. Granul Matter 22(1):28. https://doi.org/10.1007/s10035-019-0990-7

    Article  Google Scholar 

  30. Ho TYK, Jardine RJ, Anh-Minh N (2011) Large-displacement interface shear between steel and granular media. Geotechnique 61(3):221–234. https://doi.org/10.1680/geot.8.P.086

    Article  Google Scholar 

  31. Hossain MA, Yin JH (2015) Dilatancy and strength of an unsaturated soil-cement interface in direct shear tests. Int J Geomech. https://doi.org/10.1061/(Asce)Gm.1943-5622.0000428

    Article  Google Scholar 

  32. Hu LM, Pu JL (2004) Testing and modeling of soil-structure interface. J Geotech Geoenviron 130(8):851–860. https://doi.org/10.1061/(Asce)1090-0241(2004)130:8(851)

    Article  Google Scholar 

  33. Huang X, Hanley KJ, O’Sullivan C, Kwok CY (2014) Exploring the influence of interparticle friction on critical state behaviour using DEM. Int J Numer Anal Met 38(12):1276–1297. https://doi.org/10.1002/nag.2259

    Article  Google Scholar 

  34. Huang X, O’Sullivan C, Hanley KJ, Kwok CY (2014) Discrete-element method analysis of the state parameter. Geotechnique 64(12):954–965. https://doi.org/10.1680/geot.14.P.013

    Article  Google Scholar 

  35. Iwashita K, Oda M (1998) Rolling resistance at contacts in simulation of shear band development by DEM. J Eng Mech 124(3):285–292. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:3(285)

    Article  Google Scholar 

  36. Jensen RP, Bosscher PJ, Plesha ME, Edil TB (1999) DEM simulation of granular media-structure interface: effects of surface roughness and particle shape. Int J Numer Anal Met 23(6):531–547. https://doi.org/10.1002/(SICI)1096-9853(199905)23:6%3C531::AID-NAG980%3E3.0.CO;2-V

    Article  MATH  Google Scholar 

  37. Ji K, Arson C (2020) Tensile strength of calcite/HMWM and silica/HMWM interfaces: a molecular dynamics analysis. Constr Build Mater 251:118925. https://doi.org/10.1016/j.conbuildmat.2020.118925

    Article  Google Scholar 

  38. Jiang MJ, Konrad JM, Leroueil S (2003) An efficient technique for generating homogeneous specimens for DEM studies. Comput Geotech 30(7):579–597. https://doi.org/10.1016/S0266-352X(03)00064-8

    Article  Google Scholar 

  39. Jiang MJ, Yu HS, Harris D (2005) A novel discrete model for granular material incorporating rolling resistance. Comput Geotech 32(5):340–357. https://doi.org/10.1016/j.compgeo.2005.05.001

    Article  Google Scholar 

  40. Jing XY, Zhou WH, Zhu HX, Yin ZY, Li YM (2018) Analysis of soil-structural interface behavior using three-dimensional DEM simulations. Int J Numer Anal Met 42(2):339–357. https://doi.org/10.1002/nag.2745

    Article  Google Scholar 

  41. Khabazian M, Mirghasemi AA, Bayesteh H (2018) Compressibility of montmorillonite/kaolinite mixtures in consolidation testing using discrete element method. Comput Geotech 104:271–280. https://doi.org/10.1016/j.compgeo.2018.09.005

    Article  Google Scholar 

  42. Kuo M, Bolton M (2014) Shear tests on deep-ocean clay crust from the Gulf of Guinea. Geotechnique 64(4):249–257. https://doi.org/10.1680/geot.13.P.020

    Article  Google Scholar 

  43. Lashkari A, Kadivar M (2016) A constitutive model for unsaturated soil–structure interfaces. Int J Numer Anal Met 40(2):207–234

    Article  Google Scholar 

  44. Liu YM, Liu HB, Mao HJ (2018) The influence of rolling resistance on the stress-dilatancy and fabric anisotropy of granular materials. Granul Matter. https://doi.org/10.1007/s10035-017-0780-z

    Article  Google Scholar 

  45. Liu HB, Song EX, Ling HI (2006) Constitutive modeling of soil-structure interface through the concept of critical state soil mechanics. Mech Res Commun 33(4):515–531. https://doi.org/10.1016/j.mechrescom.2006.01.002

    Article  MATH  Google Scholar 

  46. Liu SH, Sun DA, Matsuoka H (2005) On the interface friction in direct shear test. Comput Geotech 32(5):317–325. https://doi.org/10.1016/j.compgeo.2005.05.002

    Article  Google Scholar 

  47. Liu X, Zhou A, Shen S-l, Li J, Sheng D (2020) A micro-mechanical model for unsaturated soils based on DEM. Comput Methods Appl Mech Eng 368:113183. https://doi.org/10.1016/j.cma.2020.113183

    Article  MathSciNet  MATH  Google Scholar 

  48. Martinez A, Stutz HH (2019) Rate effects on the interface shear behaviour of normally and overconsolidated clay. Geotechnique 69(9):801–815. https://doi.org/10.1680/jgeot.17.P.311

    Article  Google Scholar 

  49. Md Mizanur R, Lo SR (2012) Predicting the onset of static liquefaction of loose sand with fines. J Geotech Geoenviron 138(8):1037–1041. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000661

    Article  Google Scholar 

  50. Mu ZM, Desai Chandrakant S, Drumm Eric C (1984) Interface model for dynamic soil-structure interaction. J Geotech Eng 110(9):1257–1273. https://doi.org/10.1061/(ASCE)0733-9410(1984)110:9(1257)

    Article  Google Scholar 

  51. Namjoo AM, Toufigh MM, Toufigh V (2019) Experimental investigation of interface behaviour between different types of sand and carbon fibre polymer. Eur J Environ Civ En. https://doi.org/10.1080/19648189.2019.1626290

    Article  Google Scholar 

  52. Ooi LH, Carter JP (1987) A constant normal stiffness direct shear device for static and cyclic loading. Geotech Test J 10(1):3–12. https://doi.org/10.1520/GTJ10132J

    Article  Google Scholar 

  53. Owen PJ, Cleary PW, Mériaux C (2009) Quasi-static fall of planar granular columns: comparison of 2D and 3D discrete element modelling with laboratory experiments. Geomech Geoeng 4(1):55–77. https://doi.org/10.1080/17486020902767388

    Article  Google Scholar 

  54. Porcino D, Fioravante V, Ghionna VN, Pedroni S (2003) Interface behavior of sands from constant normal stiffness direct shear tests. Geotech Test J 26(3):289–301. https://doi.org/10.1520/GTJ11308J

    Article  Google Scholar 

  55. Potyondy JGJG (1961) Skin friction between various soils and construction materials. Geotechnique 11(4):339–353

    Article  Google Scholar 

  56. Potyondy DO, Cundall PA (2004) A bonded-particle model for rock. Int J Rock Mech Min 41(8):1329–1364. https://doi.org/10.1016/j.ijrmms.2004.09.011

    Article  Google Scholar 

  57. Reddy ES, Chapman DN, Sastry VVRN (2000) Direct shear interface test for shaft capacity of piles in sand. Geotech Test J 23(2):199–205. https://doi.org/10.1520/GTJ11044J

    Article  Google Scholar 

  58. Rothenburg L, Bathurst RJ (1989) Analytical study of induced anisotropy in idealized granular-materials. Geotechnique 39(4):601–614. https://doi.org/10.1680/geot.1989.39.4.601

    Article  Google Scholar 

  59. Rowe PW (1962) The stress-dilatancy relation for static equilibrium of an assembly of particles in contact. Proc R Soc Lond A 269(1339):500–527

    Article  Google Scholar 

  60. Rui S, Wang L, Guo Z, Cheng X, Wu B (2021) Monotonic behavior of interface shear between carbonate sands and steel. Acta Geotech 16(1):167–187. https://doi.org/10.1007/s11440-020-00987-9

    Article  Google Scholar 

  61. Sadrekarimi A, Olson SM (2010) Shear band formation observed in ring shear tests on sandy soils. J Geotech Geoenviron 136(2):366–375. https://doi.org/10.1061/(Asce)Gt.1943-5606.0000220

    Article  Google Scholar 

  62. Sadrekarimi A, Olson Scott M (2010) Shear band formation observed in ring shear tests on sandy soils. J Geotech Geoenviron 136(2):366–375. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000220

    Article  Google Scholar 

  63. Segurado J, Llorca J (2004) A new three-dimensional interface finite element to simulate fracture in composites. Int J Solids Struct 41(11):2977–2993. https://doi.org/10.1016/j.ijsolstr.2004.01.007

    Article  MATH  Google Scholar 

  64. Shi JS, Guo PJ (2018) Induced fabric anisotropy of granular materials in biaxial tests along imposed strain paths. Soils Found 58(2):249–263. https://doi.org/10.1016/j.sandf.2018.02.001

    Article  Google Scholar 

  65. Stoltz G, Nicaise S, Veylon G, Poulain D (2020) Determination of geomembrane - protective geotextile friction angle: an insight into the shear rate effect. Geotext Geomembranes 48(2):176–189. https://doi.org/10.1016/j.geotexmem.2019.11.007

    Article  Google Scholar 

  66. Su LJ, Zhou WH, Chen WB, Jie XX (2018) Effects of relative roughness and mean particle size on the shear strength of sand-steel interface. Measurement 122:339–346. https://doi.org/10.1016/j.measurement.2018.03.003

    Article  Google Scholar 

  67. Suchorzewski J, Tejchman J, Nitka M, Bobinski J (2019) Meso-scale analyses of size effect in brittle materials using DEM. Granul Matter. https://doi.org/10.1007/s10035-018-0862-6

    Article  Google Scholar 

  68. Tabucanon JT, Airey DW, Poulos HG (1995) Pile skin friction in sands from constant normal stiffness tests. Geotech Test J 18(3):350–364. https://doi.org/10.1520/GTJ11004J

    Article  Google Scholar 

  69. Tiwari B, Al-Adhadh AR (2014) Influence of relative density on static soil–structure frictional resistance of dry and saturated sand. Geotech Geol Eng 32(2):411–427

    Article  Google Scholar 

  70. Uesugi M, Kishida H, Tsubakihara Y (1988) Behavior of sand particles in sand-steel friction. Soils Found 28(1):107–118. https://doi.org/10.3208/sandf1972.28.107

    Article  Google Scholar 

  71. Uesugi M, Kishida H, Tsubakihara Y (1989) Friction between sand and steel under repeated loading. Soils Found 29(3):127–137. https://doi.org/10.3208/sandf1972.29.3_127

    Article  Google Scholar 

  72. Vangla P, Latha GM (2015) Influence of particle size on the friction and interfacial shear strength of sands of similar morphology. Int J Geosynth Groun 1(1):6. https://doi.org/10.1007/s40891-014-0008-9

    Article  Google Scholar 

  73. Wang P, Arson C (2016) Discrete element modeling of shielding and size effects during single particle crushing. Comput Geotech 78:227–236. https://doi.org/10.1016/j.compgeo.2016.04.003

    Article  Google Scholar 

  74. Wang P, Arson C (2018) Energy distribution during the quasi-static confined comminution of granular materials. Acta Geotech 13(5):1075–1083. https://doi.org/10.1007/s11440-017-0622-5

    Article  Google Scholar 

  75. Wang X, Gong J, An A, Zhang K, Nie Z (2019) Random generation of convex granule packing based on weighted Voronoi tessellation and cubic-polynomial-curve fitting. Comput Geotech 113:103088. https://doi.org/10.1016/j.compgeo.2019.05.003

    Article  Google Scholar 

  76. Wang J, Gutierrez M (2010) Discrete element simulations of direct shear specimen scale effects. Geotechnique 60(5):395–409. https://doi.org/10.1680/geot.2010.60.5.395

    Article  Google Scholar 

  77. Wang JF, Gutierrez MS, Dove JE (2007) Numerical studies of shear banding in interface shear tests using a new strain calculation method. Int J Numer Anal Met 31(12):1349–1366. https://doi.org/10.1002/nag.589

    Article  MATH  Google Scholar 

  78. Wang J, Jiang M (2011) Unified soil behavior of interface shear test and direct shear test under the influence of lower moving boundaries. Granul Matter 13(5):631–641. https://doi.org/10.1007/s10035-011-0275-2

    Article  Google Scholar 

  79. Wang ZG, Richwien W (2002) A study of soil-reinforcement interface friction. J Geotech Geoenviron 128(1):92–94. https://doi.org/10.1061/(Asce)1090-0241(2002)128:1(92)

    Article  Google Scholar 

  80. Wang G, Wei JT (2016) Microstructure evolution of granular soils in cyclic mobility and post-liquefaction process. Granul Matter. https://doi.org/10.1007/s10035-016-0621-5

    Article  Google Scholar 

  81. Wang P, Yin Z-Y (2020) Micro-mechanical analysis of caisson foundation in sand using DEM: particle breakage effect. Ocean Eng 215:107921. https://doi.org/10.1016/j.oceaneng.2020.107921

    Article  Google Scholar 

  82. Wang P, Yin Z-Y (2020) Micro-mechanical analysis of caisson foundation in sand using DEM. Ocean Eng 203:107240. https://doi.org/10.1016/j.oceaneng.2020.107240

    Article  Google Scholar 

  83. Wang HL, Zhou WH, Yin ZY, Jie XX (2019) Effect of grain size distribution of sandy soil on shearing behaviors at soil-structure interface. J Mater Civil Eng. https://doi.org/10.1061/(Asce)Mt.1943-5533.0002880

    Article  Google Scholar 

  84. Wiebicke M, Ando E, Viggiani G, Herle I (2020) Measuring the evolution of contact fabric in shear bands with X-ray tomography. Acta Geotech 15(1):79–93. https://doi.org/10.1007/s11440-019-00869-9

    Article  Google Scholar 

  85. Wood DM, Maeda K (2008) Changing grading of soil: effect on critical states. Acta Geotech 3(1):3–14. https://doi.org/10.1007/s11440-007-0041-0

    Article  Google Scholar 

  86. Wu MM, Wang JF (2020) A DEM investigation on crushing of sand particles containing intrinsic flaws. Soils Found 60(2):562–572. https://doi.org/10.1016/j.sandf.2020.03.007

    Article  Google Scholar 

  87. Xiong H, Nicot F, Yin ZY (2019) From micro scale to boundary value problem: using a micromechanically based model. Acta Geotech 14(5):1307–1323. https://doi.org/10.1007/s11440-018-0717-7

    Article  Google Scholar 

  88. Yamamuro JA, Lade PV (1997) Static liquefaction of very loose sands. Can Geotech J 34(6):905–917. https://doi.org/10.1139/t97-057

    Article  Google Scholar 

  89. Yang J, Yin Z-Y (2021) Soil-structure interface modeling with the nonlinear incremental approach. Int J Numer Anal Met n/a (n/a). https://doi.org/10.1002/nag.3206

    Article  Google Scholar 

  90. Yin ZY, Chang CS, Hicher PY (2010) Micromechanical modelling for effect of inherent anisotropy on cyclic behaviour of sand. Int J Solids Struct 47(14–15):1933–1951. https://doi.org/10.1016/j.ijsolstr.2010.03.028

    Article  MATH  Google Scholar 

  91. Yin Z-Y, Wang P (2021) Micro-mechanical analysis of caisson foundation in sand using DEM: particle shape effect. Appl Ocean Res 111:102630. https://doi.org/10.1016/j.apor.2021.102630

    Article  Google Scholar 

  92. Yin Z-Y, Wang P, Zhang F (2020) Effect of particle shape on the progressive failure of shield tunnel face in granular soils by coupled FDM-DEM method. Tunn Undergr Sp Tech 100:103394. https://doi.org/10.1016/j.tust.2020.103394

    Article  Google Scholar 

  93. Yin ZY, Xu Q, Chang CS (2013) Modeling cyclic behavior of clay by micromechanical approach. J Eng Mech 139(9):1305–1309. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000516

    Article  Google Scholar 

  94. Yin Z-Y, Xu Q, Hicher P-Y (2013) A simple critical-state-based double-yield-surface model for clay behavior under complex loading. Acta Geotech 8(5):509–523. https://doi.org/10.1007/s11440-013-0206-y

    Article  Google Scholar 

  95. Yin ZZ, Zhu H, Xu GH (1995) A study of deformation in the interface between soil and concrete. Comput Geotech 17(1):75–92. https://doi.org/10.1016/0266-352X(95)91303-L

    Article  Google Scholar 

  96. Yoshimi Y, Kishida T (1981) A ring torsion apparatus for evaluating friction between soil and metal surfaces. Geotech Test J 4(4):145–152. https://doi.org/10.1520/GTJ10783J

    Article  Google Scholar 

  97. Zaman MM-U, Desai CS, Drumm EC (1984) Interface model for dynamic soil-structure interaction. J Geotech Eng 110(9):1257–1273

    Article  Google Scholar 

  98. Zeghal M, Edil TB (2002) Soil structure interaction analysis: modeling the interface. Can Geotech J 39(3):620–628. https://doi.org/10.1139/T02-016

    Article  Google Scholar 

  99. Zhang F, Li M, Peng M, Chen C, Zhang L (2019) Three-dimensional DEM modeling of the stress–strain behavior for the gap-graded soils subjected to internal erosion. Acta Geotech 14(2):487–503. https://doi.org/10.1007/s11440-018-0655-4

    Article  Google Scholar 

  100. Zhang J, Wang X, Yin Z-Y, Liang Z (2020) DEM modeling of large-scale triaxial test of rock clasts considering realistic particle shapes and flexible membrane boundary. Eng Geol 279:105871. https://doi.org/10.1016/j.enggeo.2020.105871

    Article  Google Scholar 

  101. Zhang G, Zhang JM (2008) Unified modeling of monotonic and cyclic behavior of interface between structure and gravelly soil. Soils Found 48(2):231–245. https://doi.org/10.3208/sandf.48.231

    Article  Google Scholar 

  102. Zhao SW, Evans TM, Zhou XW (2018) Shear-induced anisotropy of granular materials with rolling resistance and particle shape effects. Int J Solids Struct 150:268–281. https://doi.org/10.1016/j.ijsolstr.2018.06.024

    Article  Google Scholar 

  103. Zhao C, Zhang R, Zhao C, Wang W, Wang Y (2019) A three-dimensional evaluation of interface shear behavior between granular material and rough surface. J Test Eval 49(2):713–727. https://doi.org/10.1520/JTE20180749

    Article  Google Scholar 

  104. Zhao SW, Zhang N, Zhou XW, Zhang L (2017) Particle shape effects on fabric of granular random packing. Powder Technol 310:175–186. https://doi.org/10.1016/j.powtec.2016.12.094

    Article  Google Scholar 

  105. Zhu HX, Zhou WH, Jing XY, Yin ZY (2019) Observations on fabric evolution to a common micromechanical state at the soil-structure interface. Int J Numer Anal Met 43(15):2449–2470. https://doi.org/10.1002/nag.2989

    Article  Google Scholar 

  106. Zhu HX, Zhou WH, Yin ZY (2018) Deformation mechanism of strain localization in 2D numerical interface tests. Acta Geotech 13(3):557–573. https://doi.org/10.1007/s11440-017-0561-1

    Article  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the Research Grants Council (RGC) of Hong Kong Special Administrative Region Government (HKSARG) of China (Grant No.: 15217220, N_PolyU534/20).

Funding

GRF project (Grant No. 15217220) and NSFC/RGC Joint Research Scheme (Grant No. N_PolyU534/20) from the Research Grants Council (RGC).

Author information

Authors and Affiliations

Authors

Contributions

PW, ZYY contributed to conceptualization; PW, ZYY, WHZ contributed to methodology; PW, ZYY, WBC contributed to formal analysis and investigation; PW, ZYY contributed to writing—original draft preparation; ZYY contributed to funding acquisition.

Corresponding author

Correspondence to Zhen-Yu Yin.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Availability of data and material

Some or all data and material that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

Some or all code that support the findings of this study are available from the corresponding author upon reasonable request.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Yin, ZY., Zhou, WH. et al. Micro-mechanical analysis of soil–structure interface behavior under constant normal stiffness condition with DEM. Acta Geotech. 17, 2711–2733 (2022). https://doi.org/10.1007/s11440-021-01374-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-021-01374-8

Keywords