Abstract
The mechanical behavior at soil–structure interface (SSI) has a crucial influence on the safety and stability of geotechnical structures. However, the behavior of SSI under constant normal stiffness condition from micro- to macro-scale receives little attention. In this study, the frictional characteristics of SSI and the associated displacement localization under constant normal stiffness condition are investigated at both macro- and microscales by simulating a series of interface shear tests with discrete element method. The algorithm to achieve a constant normal stiffness is first developed. The macroscopic mechanical response of the interface shear tests with both loose and dense specimens at various normal stiffness is discussed in terms of shear stress, normal stress, vertical displacement, horizontal displacement and stress ratio. Then, the microscopic behaviors and properties, including shear zone formation, localized void ratio, coordination number, force chains and soil fabric, are investigated. The effect of normal stiffness is thus clarified at both macro- and microscales.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Afzali-Nejad A, Lashkari A, Shourijeh PT (2017) Influence of particle shape on the shear strength and dilation of sand-woven geotextile interfaces. Geotext Geomembranes 45(1):54–66. https://doi.org/10.1016/j.geotexmem.2016.07.005
Ai J, Chen JF, Rotter JM, Ooi JY (2011) Assessment of rolling resistance models in discrete element simulations. Powder Technol 206(3):269–282. https://doi.org/10.1016/j.powtec.2010.09.030
Alshibli KA, Sture S (2000) Shear band formation in plane strain experiments of sand. J Geotech Geoenviron 126(6):495–503. https://doi.org/10.1061/(Asce)1090-0241(2000)126:6(495)
Asadzadeh M, Soroush A (2016) Fundamental investigation of constant stress simple shear test using DEM. Powder Technol 292:129–139. https://doi.org/10.1016/j.powtec.2016.01.029
Barnett N, Rahman MM, Karim MR, Nguyen HBK (2020) Evaluating the particle rolling effect on the characteristic features of granular material under the critical state soil mechanics framework. In: Granular Matter vol 4 Springer, pp 1–24. https://doi.org/10.1007/s10035-020-01055-5
Boukpeti N, White DJ (2017) Interface shear box tests for assessing axial pipe-soil resistance. Geotechnique 67(1):18–30. https://doi.org/10.1680/jgeot.15.P.112
Cao S, Xue G, Yilmaz E, Yin Z, Yang F (2020) Utilizing concrete pillars as an environmental mining practice in underground mines. J Clean Prod 278:123433. https://doi.org/10.1016/j.jclepro.2020.123433
Cerfontaine B, Dieudonné AC, Radu JP, Collin F, Charlier R (2015) 3D zero-thickness coupled interface finite element: formulation and application. Comput Geotech 69:124–140. https://doi.org/10.1016/j.compgeo.2015.04.016
Chang CS, Yin ZY, Hicher PY (2011) Micromechanical analysis for interparticle and assembly instability of sand. J Eng Mech 137(3):155–168. https://doi.org/10.1061/(Asce)Em.1943-7889.0000204
Chen W-B, Zhou W-H, dos Santos JA (2020) Analysis of consistent soil–structure interface response in multi–directional shear tests by discrete element modeling. Transp Geotech 24:100379. https://doi.org/10.1016/j.trgeo.2020.100379
Cheung G, O’Sullivan C (2008) Effective simulation of flexible lateral boundaries in two- and three-dimensional DEM simulations. Particuology 6(6):483–500. https://doi.org/10.1016/j.partic.2008.07.018
Cundall PA (1971) A computer model for simulating progressive, large-scale movement in blocky rock system. In: proceedings of the international symposium on rock mechanics
Daouadji A, Darve F, Al Gali H, Hicher PY, Laouafa F, Lignon S, Nicot F, Nova R, Pinheiro M, Prunier F, Sibille L, Wan R (2011) Diffuse failure in geomaterials: experiments, theory and modelling. Int J Numer Anal Met 35(16):1731–1773. https://doi.org/10.1002/nag.975
DeJong JT, Randolph MF, White DJ (2003) Interface load transfer degradation during cyclic loading: a microscale investigation. Soils Found 43(4):81–93. https://doi.org/10.3208/sandf.43.4_81
DeJong JT, Westgate ZJ (2009) Role of initial state, material properties, and confinement condition on local and global soil-structure interface behavior. J Geotech Geoenviron 135(11):1646–1660. https://doi.org/10.1061/(Asce)1090-0241(2009)135:11(1646)
DeJong JT, White DJ, Randolph MF (2006) Microscale observation and modeling of soil-structure interface behavior using particle image velocimetry. Soils Found 46(1):15–28. https://doi.org/10.3208/sandf.46.15
Dolbow J, Harari I (2009) An efficient finite element method for embedded interface problems. Int J Numer Meth Eng 78(2):229–252. https://doi.org/10.1002/nme.2486
Eid HT, Amarasinghe RS, Rabie KH, Wijewickreme D (2015) Residual shear strength of fine-grained soils and soil-solid interfaces at low effective normal stresses. Can Geotech J 52(2):198–210. https://doi.org/10.1139/cgj-2014-0019
Evgin E, Fakharian K (1996) Effect of stress paths on the behaviour of sand-steel interfaces. Can Geotech J 33(6):853–865. https://doi.org/10.1139/t96-116-336
Feng S-J, Chen J-N, Chen H-X, Liu X, Zhao T, Zhou A (2020) Analysis of sand–woven geotextile interface shear behavior using discrete element method (DEM). Can Geotech J 57(3):433–447. https://doi.org/10.1139/cgj-2018-0703
Fleischmann JA, Plesha ME, Drugan WJ (2013) Quantitative comparison of two-dimensional and three-dimensional discrete-element simulations of nominally two-dimensional shear flow. Int J Geomech 13(3):205–212. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000202
Frost JD, DeJong JT, Recalde M (2002) Shear failure behavior of granular-continuum interfaces. Eng Fract Mech 69(17):2029–2048. https://doi.org/10.1016/S0013-7944(02)00075-9
Gao ZW, Zhao JD (2013) Strain localization and fabric evolution in sand. Int J Solids Struct 50(22–23):3634–3648. https://doi.org/10.1016/j.ijsolstr.2013.07.005
Goldenberg C, Goldhirsch I (2005) Friction enhances elasticity in granular solids. Nature 435(7039):188–191
Gomez JE, Filz GM, Ebeling RM (2003) Extended hyperbolic model for sand-to-concrete interfaces. J Geotech Geoenviron 129(11):993–1000. https://doi.org/10.1061/(Asce)1090-0241(2003)129:11(993)
Grabowski A, Nitka M, Tejchman J (2021) 3D DEM simulations of monotonic interface behaviour between cohesionless sand and rigid wall of different roughness. Acta Geotech 16(4):1001–1026. https://doi.org/10.1007/s11440-020-01085-6
Gu XQ, Chen YW, Huang MS (2017) Critical state shear behavior of the soil-structure interface determined by discrete element modeling. Particuology 35:68–77. https://doi.org/10.1016/j.partic.2017.02.002
Hamid TB, Miller GA (2009) Shear strength of unsaturated soil interfaces. Can Geotech J 46(5):595–606. https://doi.org/10.1139/T09-002
He X, Wu W, Cai G, Qi J, Kim JR, Zhang D, Jiang M (2020) Work–energy analysis of granular assemblies validates and calibrates a constitutive model. Granul Matter 22(1):28. https://doi.org/10.1007/s10035-019-0990-7
Ho TYK, Jardine RJ, Anh-Minh N (2011) Large-displacement interface shear between steel and granular media. Geotechnique 61(3):221–234. https://doi.org/10.1680/geot.8.P.086
Hossain MA, Yin JH (2015) Dilatancy and strength of an unsaturated soil-cement interface in direct shear tests. Int J Geomech. https://doi.org/10.1061/(Asce)Gm.1943-5622.0000428
Hu LM, Pu JL (2004) Testing and modeling of soil-structure interface. J Geotech Geoenviron 130(8):851–860. https://doi.org/10.1061/(Asce)1090-0241(2004)130:8(851)
Huang X, Hanley KJ, O’Sullivan C, Kwok CY (2014) Exploring the influence of interparticle friction on critical state behaviour using DEM. Int J Numer Anal Met 38(12):1276–1297. https://doi.org/10.1002/nag.2259
Huang X, O’Sullivan C, Hanley KJ, Kwok CY (2014) Discrete-element method analysis of the state parameter. Geotechnique 64(12):954–965. https://doi.org/10.1680/geot.14.P.013
Iwashita K, Oda M (1998) Rolling resistance at contacts in simulation of shear band development by DEM. J Eng Mech 124(3):285–292. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:3(285)
Jensen RP, Bosscher PJ, Plesha ME, Edil TB (1999) DEM simulation of granular media-structure interface: effects of surface roughness and particle shape. Int J Numer Anal Met 23(6):531–547. https://doi.org/10.1002/(SICI)1096-9853(199905)23:6%3C531::AID-NAG980%3E3.0.CO;2-V
Ji K, Arson C (2020) Tensile strength of calcite/HMWM and silica/HMWM interfaces: a molecular dynamics analysis. Constr Build Mater 251:118925. https://doi.org/10.1016/j.conbuildmat.2020.118925
Jiang MJ, Konrad JM, Leroueil S (2003) An efficient technique for generating homogeneous specimens for DEM studies. Comput Geotech 30(7):579–597. https://doi.org/10.1016/S0266-352X(03)00064-8
Jiang MJ, Yu HS, Harris D (2005) A novel discrete model for granular material incorporating rolling resistance. Comput Geotech 32(5):340–357. https://doi.org/10.1016/j.compgeo.2005.05.001
Jing XY, Zhou WH, Zhu HX, Yin ZY, Li YM (2018) Analysis of soil-structural interface behavior using three-dimensional DEM simulations. Int J Numer Anal Met 42(2):339–357. https://doi.org/10.1002/nag.2745
Khabazian M, Mirghasemi AA, Bayesteh H (2018) Compressibility of montmorillonite/kaolinite mixtures in consolidation testing using discrete element method. Comput Geotech 104:271–280. https://doi.org/10.1016/j.compgeo.2018.09.005
Kuo M, Bolton M (2014) Shear tests on deep-ocean clay crust from the Gulf of Guinea. Geotechnique 64(4):249–257. https://doi.org/10.1680/geot.13.P.020
Lashkari A, Kadivar M (2016) A constitutive model for unsaturated soil–structure interfaces. Int J Numer Anal Met 40(2):207–234
Liu YM, Liu HB, Mao HJ (2018) The influence of rolling resistance on the stress-dilatancy and fabric anisotropy of granular materials. Granul Matter. https://doi.org/10.1007/s10035-017-0780-z
Liu HB, Song EX, Ling HI (2006) Constitutive modeling of soil-structure interface through the concept of critical state soil mechanics. Mech Res Commun 33(4):515–531. https://doi.org/10.1016/j.mechrescom.2006.01.002
Liu SH, Sun DA, Matsuoka H (2005) On the interface friction in direct shear test. Comput Geotech 32(5):317–325. https://doi.org/10.1016/j.compgeo.2005.05.002
Liu X, Zhou A, Shen S-l, Li J, Sheng D (2020) A micro-mechanical model for unsaturated soils based on DEM. Comput Methods Appl Mech Eng 368:113183. https://doi.org/10.1016/j.cma.2020.113183
Martinez A, Stutz HH (2019) Rate effects on the interface shear behaviour of normally and overconsolidated clay. Geotechnique 69(9):801–815. https://doi.org/10.1680/jgeot.17.P.311
Md Mizanur R, Lo SR (2012) Predicting the onset of static liquefaction of loose sand with fines. J Geotech Geoenviron 138(8):1037–1041. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000661
Mu ZM, Desai Chandrakant S, Drumm Eric C (1984) Interface model for dynamic soil-structure interaction. J Geotech Eng 110(9):1257–1273. https://doi.org/10.1061/(ASCE)0733-9410(1984)110:9(1257)
Namjoo AM, Toufigh MM, Toufigh V (2019) Experimental investigation of interface behaviour between different types of sand and carbon fibre polymer. Eur J Environ Civ En. https://doi.org/10.1080/19648189.2019.1626290
Ooi LH, Carter JP (1987) A constant normal stiffness direct shear device for static and cyclic loading. Geotech Test J 10(1):3–12. https://doi.org/10.1520/GTJ10132J
Owen PJ, Cleary PW, Mériaux C (2009) Quasi-static fall of planar granular columns: comparison of 2D and 3D discrete element modelling with laboratory experiments. Geomech Geoeng 4(1):55–77. https://doi.org/10.1080/17486020902767388
Porcino D, Fioravante V, Ghionna VN, Pedroni S (2003) Interface behavior of sands from constant normal stiffness direct shear tests. Geotech Test J 26(3):289–301. https://doi.org/10.1520/GTJ11308J
Potyondy JGJG (1961) Skin friction between various soils and construction materials. Geotechnique 11(4):339–353
Potyondy DO, Cundall PA (2004) A bonded-particle model for rock. Int J Rock Mech Min 41(8):1329–1364. https://doi.org/10.1016/j.ijrmms.2004.09.011
Reddy ES, Chapman DN, Sastry VVRN (2000) Direct shear interface test for shaft capacity of piles in sand. Geotech Test J 23(2):199–205. https://doi.org/10.1520/GTJ11044J
Rothenburg L, Bathurst RJ (1989) Analytical study of induced anisotropy in idealized granular-materials. Geotechnique 39(4):601–614. https://doi.org/10.1680/geot.1989.39.4.601
Rowe PW (1962) The stress-dilatancy relation for static equilibrium of an assembly of particles in contact. Proc R Soc Lond A 269(1339):500–527
Rui S, Wang L, Guo Z, Cheng X, Wu B (2021) Monotonic behavior of interface shear between carbonate sands and steel. Acta Geotech 16(1):167–187. https://doi.org/10.1007/s11440-020-00987-9
Sadrekarimi A, Olson SM (2010) Shear band formation observed in ring shear tests on sandy soils. J Geotech Geoenviron 136(2):366–375. https://doi.org/10.1061/(Asce)Gt.1943-5606.0000220
Sadrekarimi A, Olson Scott M (2010) Shear band formation observed in ring shear tests on sandy soils. J Geotech Geoenviron 136(2):366–375. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000220
Segurado J, Llorca J (2004) A new three-dimensional interface finite element to simulate fracture in composites. Int J Solids Struct 41(11):2977–2993. https://doi.org/10.1016/j.ijsolstr.2004.01.007
Shi JS, Guo PJ (2018) Induced fabric anisotropy of granular materials in biaxial tests along imposed strain paths. Soils Found 58(2):249–263. https://doi.org/10.1016/j.sandf.2018.02.001
Stoltz G, Nicaise S, Veylon G, Poulain D (2020) Determination of geomembrane - protective geotextile friction angle: an insight into the shear rate effect. Geotext Geomembranes 48(2):176–189. https://doi.org/10.1016/j.geotexmem.2019.11.007
Su LJ, Zhou WH, Chen WB, Jie XX (2018) Effects of relative roughness and mean particle size on the shear strength of sand-steel interface. Measurement 122:339–346. https://doi.org/10.1016/j.measurement.2018.03.003
Suchorzewski J, Tejchman J, Nitka M, Bobinski J (2019) Meso-scale analyses of size effect in brittle materials using DEM. Granul Matter. https://doi.org/10.1007/s10035-018-0862-6
Tabucanon JT, Airey DW, Poulos HG (1995) Pile skin friction in sands from constant normal stiffness tests. Geotech Test J 18(3):350–364. https://doi.org/10.1520/GTJ11004J
Tiwari B, Al-Adhadh AR (2014) Influence of relative density on static soil–structure frictional resistance of dry and saturated sand. Geotech Geol Eng 32(2):411–427
Uesugi M, Kishida H, Tsubakihara Y (1988) Behavior of sand particles in sand-steel friction. Soils Found 28(1):107–118. https://doi.org/10.3208/sandf1972.28.107
Uesugi M, Kishida H, Tsubakihara Y (1989) Friction between sand and steel under repeated loading. Soils Found 29(3):127–137. https://doi.org/10.3208/sandf1972.29.3_127
Vangla P, Latha GM (2015) Influence of particle size on the friction and interfacial shear strength of sands of similar morphology. Int J Geosynth Groun 1(1):6. https://doi.org/10.1007/s40891-014-0008-9
Wang P, Arson C (2016) Discrete element modeling of shielding and size effects during single particle crushing. Comput Geotech 78:227–236. https://doi.org/10.1016/j.compgeo.2016.04.003
Wang P, Arson C (2018) Energy distribution during the quasi-static confined comminution of granular materials. Acta Geotech 13(5):1075–1083. https://doi.org/10.1007/s11440-017-0622-5
Wang X, Gong J, An A, Zhang K, Nie Z (2019) Random generation of convex granule packing based on weighted Voronoi tessellation and cubic-polynomial-curve fitting. Comput Geotech 113:103088. https://doi.org/10.1016/j.compgeo.2019.05.003
Wang J, Gutierrez M (2010) Discrete element simulations of direct shear specimen scale effects. Geotechnique 60(5):395–409. https://doi.org/10.1680/geot.2010.60.5.395
Wang JF, Gutierrez MS, Dove JE (2007) Numerical studies of shear banding in interface shear tests using a new strain calculation method. Int J Numer Anal Met 31(12):1349–1366. https://doi.org/10.1002/nag.589
Wang J, Jiang M (2011) Unified soil behavior of interface shear test and direct shear test under the influence of lower moving boundaries. Granul Matter 13(5):631–641. https://doi.org/10.1007/s10035-011-0275-2
Wang ZG, Richwien W (2002) A study of soil-reinforcement interface friction. J Geotech Geoenviron 128(1):92–94. https://doi.org/10.1061/(Asce)1090-0241(2002)128:1(92)
Wang G, Wei JT (2016) Microstructure evolution of granular soils in cyclic mobility and post-liquefaction process. Granul Matter. https://doi.org/10.1007/s10035-016-0621-5
Wang P, Yin Z-Y (2020) Micro-mechanical analysis of caisson foundation in sand using DEM: particle breakage effect. Ocean Eng 215:107921. https://doi.org/10.1016/j.oceaneng.2020.107921
Wang P, Yin Z-Y (2020) Micro-mechanical analysis of caisson foundation in sand using DEM. Ocean Eng 203:107240. https://doi.org/10.1016/j.oceaneng.2020.107240
Wang HL, Zhou WH, Yin ZY, Jie XX (2019) Effect of grain size distribution of sandy soil on shearing behaviors at soil-structure interface. J Mater Civil Eng. https://doi.org/10.1061/(Asce)Mt.1943-5533.0002880
Wiebicke M, Ando E, Viggiani G, Herle I (2020) Measuring the evolution of contact fabric in shear bands with X-ray tomography. Acta Geotech 15(1):79–93. https://doi.org/10.1007/s11440-019-00869-9
Wood DM, Maeda K (2008) Changing grading of soil: effect on critical states. Acta Geotech 3(1):3–14. https://doi.org/10.1007/s11440-007-0041-0
Wu MM, Wang JF (2020) A DEM investigation on crushing of sand particles containing intrinsic flaws. Soils Found 60(2):562–572. https://doi.org/10.1016/j.sandf.2020.03.007
Xiong H, Nicot F, Yin ZY (2019) From micro scale to boundary value problem: using a micromechanically based model. Acta Geotech 14(5):1307–1323. https://doi.org/10.1007/s11440-018-0717-7
Yamamuro JA, Lade PV (1997) Static liquefaction of very loose sands. Can Geotech J 34(6):905–917. https://doi.org/10.1139/t97-057
Yang J, Yin Z-Y (2021) Soil-structure interface modeling with the nonlinear incremental approach. Int J Numer Anal Met n/a (n/a). https://doi.org/10.1002/nag.3206
Yin ZY, Chang CS, Hicher PY (2010) Micromechanical modelling for effect of inherent anisotropy on cyclic behaviour of sand. Int J Solids Struct 47(14–15):1933–1951. https://doi.org/10.1016/j.ijsolstr.2010.03.028
Yin Z-Y, Wang P (2021) Micro-mechanical analysis of caisson foundation in sand using DEM: particle shape effect. Appl Ocean Res 111:102630. https://doi.org/10.1016/j.apor.2021.102630
Yin Z-Y, Wang P, Zhang F (2020) Effect of particle shape on the progressive failure of shield tunnel face in granular soils by coupled FDM-DEM method. Tunn Undergr Sp Tech 100:103394. https://doi.org/10.1016/j.tust.2020.103394
Yin ZY, Xu Q, Chang CS (2013) Modeling cyclic behavior of clay by micromechanical approach. J Eng Mech 139(9):1305–1309. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000516
Yin Z-Y, Xu Q, Hicher P-Y (2013) A simple critical-state-based double-yield-surface model for clay behavior under complex loading. Acta Geotech 8(5):509–523. https://doi.org/10.1007/s11440-013-0206-y
Yin ZZ, Zhu H, Xu GH (1995) A study of deformation in the interface between soil and concrete. Comput Geotech 17(1):75–92. https://doi.org/10.1016/0266-352X(95)91303-L
Yoshimi Y, Kishida T (1981) A ring torsion apparatus for evaluating friction between soil and metal surfaces. Geotech Test J 4(4):145–152. https://doi.org/10.1520/GTJ10783J
Zaman MM-U, Desai CS, Drumm EC (1984) Interface model for dynamic soil-structure interaction. J Geotech Eng 110(9):1257–1273
Zeghal M, Edil TB (2002) Soil structure interaction analysis: modeling the interface. Can Geotech J 39(3):620–628. https://doi.org/10.1139/T02-016
Zhang F, Li M, Peng M, Chen C, Zhang L (2019) Three-dimensional DEM modeling of the stress–strain behavior for the gap-graded soils subjected to internal erosion. Acta Geotech 14(2):487–503. https://doi.org/10.1007/s11440-018-0655-4
Zhang J, Wang X, Yin Z-Y, Liang Z (2020) DEM modeling of large-scale triaxial test of rock clasts considering realistic particle shapes and flexible membrane boundary. Eng Geol 279:105871. https://doi.org/10.1016/j.enggeo.2020.105871
Zhang G, Zhang JM (2008) Unified modeling of monotonic and cyclic behavior of interface between structure and gravelly soil. Soils Found 48(2):231–245. https://doi.org/10.3208/sandf.48.231
Zhao SW, Evans TM, Zhou XW (2018) Shear-induced anisotropy of granular materials with rolling resistance and particle shape effects. Int J Solids Struct 150:268–281. https://doi.org/10.1016/j.ijsolstr.2018.06.024
Zhao C, Zhang R, Zhao C, Wang W, Wang Y (2019) A three-dimensional evaluation of interface shear behavior between granular material and rough surface. J Test Eval 49(2):713–727. https://doi.org/10.1520/JTE20180749
Zhao SW, Zhang N, Zhou XW, Zhang L (2017) Particle shape effects on fabric of granular random packing. Powder Technol 310:175–186. https://doi.org/10.1016/j.powtec.2016.12.094
Zhu HX, Zhou WH, Jing XY, Yin ZY (2019) Observations on fabric evolution to a common micromechanical state at the soil-structure interface. Int J Numer Anal Met 43(15):2449–2470. https://doi.org/10.1002/nag.2989
Zhu HX, Zhou WH, Yin ZY (2018) Deformation mechanism of strain localization in 2D numerical interface tests. Acta Geotech 13(3):557–573. https://doi.org/10.1007/s11440-017-0561-1
Acknowledgements
This research was financially supported by the Research Grants Council (RGC) of Hong Kong Special Administrative Region Government (HKSARG) of China (Grant No.: 15217220, N_PolyU534/20).
Funding
GRF project (Grant No. 15217220) and NSFC/RGC Joint Research Scheme (Grant No. N_PolyU534/20) from the Research Grants Council (RGC).
Author information
Authors and Affiliations
Contributions
PW, ZYY contributed to conceptualization; PW, ZYY, WHZ contributed to methodology; PW, ZYY, WBC contributed to formal analysis and investigation; PW, ZYY contributed to writing—original draft preparation; ZYY contributed to funding acquisition.
Corresponding author
Ethics declarations
Conflict of interest
The authors have no conflicts of interest to declare that are relevant to the content of this article.
Availability of data and material
Some or all data and material that support the findings of this study are available from the corresponding author upon reasonable request.
Code availability
Some or all code that support the findings of this study are available from the corresponding author upon reasonable request.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Wang, P., Yin, ZY., Zhou, WH. et al. Micro-mechanical analysis of soil–structure interface behavior under constant normal stiffness condition with DEM. Acta Geotech. 17, 2711–2733 (2022). https://doi.org/10.1007/s11440-021-01374-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11440-021-01374-8