[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Dynamic prediction of jet grouted column diameter in soft soil using Bi-LSTM deep learning

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

The bidirectional long short-term memory (Bi-LSTM) network is an innovative computation paradigm that learns bidirectional long-term dependencies between time steps and sequence data to predict future occurrences. This study proposes a framework to incorporate Bi-LSTM and data sequencing to predict diameter of jet grouted columns in soft soil in real time. The models are tested using a case study of jet grouting treatment of soft soil. The results show that the proposed strategies can efficiently predict the variation in column diameter with the depth. A comparative performance analysis among the Bi-LSTM, original long short-term memory (LSTM) and support vector regression (SVR) approaches is also conducted. The Bi-LSTM performs better than both the LSTM and SVR in root-mean-square error. This result substantiates the efficacy of modeling sequential step-by-step jet grouting process using the Bi-LSTM. Based on the analyzed results, some recommendations for improving the current design of jet grout columns are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Atangana Njock PG, Shen SL, Zhou AN, Lyu HM (2020) Evaluation of soil liquefaction using AI technology incorporating a coupled ENN/t-SNE model. Soil Dyn Earthq Eng 130:105988. https://doi.org/10.1016/j.soildyn.2019.105988

    Article  Google Scholar 

  2. Burke GK (2004) Jet grouting systems: advantages and disadvantages. In: GeoSupport 2004: drilled shafts, micropiling, deep mixing, remedial methods, and specialty foundation systems, Orlando, pp 875–886

  3. Covil CS, Skinner AE (1994) Jet grouting—a review of some of the operating parameters that form the basis of the jet grouting process. Grout Gr. https://doi.org/10.1680/gitg.19287.0041

    Article  Google Scholar 

  4. Croce P, Flora A (2000) Analysis of single-fluid jet grouting. Géotechnique 50:739–748. https://doi.org/10.1680/geot.2000.50.6.739

    Article  Google Scholar 

  5. Croce P, Flora A (1998) Jet grouting effects on pyroclastic soil. Revista Italiana di Geotecnica 2:5–14

    Google Scholar 

  6. Dabbagh AL, Gonzalez AS, Pena AS (2002) Soil erosion by a continuous water jet. Soils Found 42:1–13. https://doi.org/10.3208/Sandf.42.5_1

    Article  Google Scholar 

  7. Hamilton EL (1976) Variations of density and porosity with depth in deep-sea sediments. SEPM J Sediment Res. https://doi.org/10.1306/212f6f3c-2b24-11d7-8648000102c1865d

    Article  Google Scholar 

  8. Elbaz K, Shen S-L, Zhou A, Yuan D-J, Xu Y-S (2019) Optimization of EPB shield performance with adaptive neuro-fuzzy inference system and genetic algorithm. Appl Sci 9(4):780. https://doi.org/10.3390/app9040780

    Article  Google Scholar 

  9. Elbaz K, Shen SL, Zhou A, Yin ZY, Lyu HM (2020) Prediction of disc cutter life during shield tunneling with AI via incorporation of genetic algorithm into GMDH-type neural network. Engineering, In press

  10. Elbaz K, Shen SL, Sun WJ, Yin ZY, Zhou AN (2020) Prediction model of shield performance during tunneling via incorporating improved particle swarm optimization into ANFIS. IEEE Access 8(1):39659–39671. https://doi.org/10.1109/ACCESS.2020.2974058

    Article  Google Scholar 

  11. Elman JL (1990) Finding structure in time. Cogn Sci. https://doi.org/10.1016/0364-0213(90)90002-E

    Article  Google Scholar 

  12. Flora A, Modoni G, Lirer S, Croce P (2013) The diameter of single, double and triple fluid jet grouting columns: prediction method and field trial results. Géotechnique 63:934–945. https://doi.org/10.1680/geot.12.P.062

    Article  Google Scholar 

  13. Gao MY, Zhang N, Shen SL, Zhou AN (2020) Real-time dynamic regulation of earth pressure for shield tunneling using GRU deep learning method. IEEE Access 8:64310–64323. https://doi.org/10.1109/ACCESS.2020.2984515

    Article  Google Scholar 

  14. Gers F (2001) Long short-term memory in recurrent neural networks. PhD thesis, Ecole polytechnique Federale de Lausanne. Lausanne, Switzerland

  15. Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press, Cambridge. https://doi.org/10.1038/nmeth.3707

    Book  MATH  Google Scholar 

  16. Graves A, Fernandez S, Schmidhuber J (2005) Bidirectional LSTM networks for improved phoneme classification and recognition. In: International conference on artificial neural networks. Springer, pp 799–804

  17. Graves A, Jaitly N, Mohamed AR (2013) Hybrid speech recognition with deep bidirectional LSTM. In: 2013 IEEE workshop on automatic speech recognition and understanding, ASRU 2013-proceedings. https://doi.org/10.1109/ASRU.2013.6707742

  18. Graves A, Schmidhuber J (2005) Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Netw 18(5–6):602–610

    Article  Google Scholar 

  19. Guo Y, Liu Y, Oerlemans A, Lao S, Wu S, Lew MS (2016) Deep learning for visual understanding: a review. Neurocomputing. https://doi.org/10.1016/j.neucom.2015.09.116

    Article  Google Scholar 

  20. Ho CE (2007) Fluid–soil interaction model for jet grouting. In: Grouting for ground improvement: innovative concepts and applications, Denve, pp 1–10. https://doi.org/10.3109/03790798609166503

  21. Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput. https://doi.org/10.1162/neco.1997.9.8.1735

    Article  Google Scholar 

  22. Hu Z, Tang J, Wang Z, Zhang K, Zhang L, Sun Q (2018) Deep learning for image-based cancer detection and diagnosis—a survey. Pattern Recogn. https://doi.org/10.1016/j.patcog.2018.05.014

    Article  Google Scholar 

  23. Jin YF, Yin Z-Y, Zhou WH, Shao JF (2019) Bayesian model selection for sand with generalization ability evaluation. Int J Numer Anal Methods Geomech 43(14):2305–2327

    Article  Google Scholar 

  24. Kim DW, Lee S, Kwon S, Nam W, Cha IH, Kim HJ (2019) Deep learning-based survival prediction of oral cancer patients. Sci Rep 9:1–10. https://doi.org/10.1038/s41598-019-43372-7

    Article  Google Scholar 

  25. Kingma DP, Ba J (2015) Adam: a method for stochastic optimization. In: 3rd International conference for learning representations, San Diego

  26. Lyu HM, Shen SL, Yang J, Zhou AN (2020) Risk assessment of earthquake-triggered geohazards surrounding Wenchuan, China. Nat Hazards Rev ASCE 21(3):05020007. https://doi.org/10.1061/(ASCE)NH.1527-6996.0000375

    Article  Google Scholar 

  27. Lyu HM, Shen SL, Zhou AN, Yang J (2020) Risk assessment of mega-city infrastructures related to land subsidence using improved trapezoidal FAHP. Sci Total Environ 717(2020):135310. https://doi.org/10.1016/j.scitotenv.2019.135310

    Article  Google Scholar 

  28. Lyu HM, Shen SL, Yang J, Yin ZY (2019) Inundation analysis of metro systems with the storm water management model incorporated into a geographical information system: a case study in Shanghai. Hydrol Earth Syst Sci 23(10):4293–4307. https://doi.org/10.5194/hess-23-4293-2019

    Article  Google Scholar 

  29. McCulloch WS, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys. https://doi.org/10.1007/BF02478259

    Article  MathSciNet  MATH  Google Scholar 

  30. Modoni G, Bzówka J (2012) Analysis of foundations reinforced with jet grouting. J Geotech Geoenviron Eng ASCE 138(12):1442–1454

    Article  Google Scholar 

  31. Modoni G, Flora A, Lirer S, Ochmanski M, Croce P (2016) Design of jet grouted excavation bottom plugs. J Geotech Geoenviron Eng ASCE 142(7):04016018. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001436

    Article  Google Scholar 

  32. Modoni G, Croce P, Mongiovì L (2006) Theoretical modelling of jet grouting. Géotechnique 56:335–347. https://doi.org/10.1680/geot.2006.56.5.335

    Article  Google Scholar 

  33. Mohan A, Gaitonde DV (2018) A deep learning based approach to reduced order modeling for turbulent flow control using LSTM neural networks. arXiv preprint arXiv:1804.09269v1

  34. Ochmański M, Modoni G, Bzówka J (2015) Prediction of the diameter of jet grouting columns with artificial neural networks. Soils Found 55:425–436. https://doi.org/10.1016/j.sandf.2015.02.016

    Article  Google Scholar 

  35. Pan Y, Liu Y, Hu J, Sun M, Wang W (2017) Probabilistic investigations on the water tightness of jet-grouted ground considering geometric imperfections in diameter and position. Can Geotech J 54(10):1447–1459

    Article  Google Scholar 

  36. Ren DJ, Shen SL, Arulrajah A, Wu HN (2018) Evaluation of ground loss ratio with moving trajectories induced in double-O-tube (DOT) tunneling. Can Geotech J 55(6):894–902. https://doi.org/10.1139/cgj-2017-0355

    Article  Google Scholar 

  37. Ribeiro D, Cardoso R (2017) A review on models for the prediction of the diameter of jet grouting columns. Eur J Environ Civil Eng 21:641–669. https://doi.org/10.1080/19648189.2016.1144538

    Article  Google Scholar 

  38. Shen S-L, Wang Z-F, Yang J, Ho C-E (2013) Generalized approach for prediction of jet grout column diameter. J Geotech Geoenviron Eng 139:2060–2069. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000932

    Article  Google Scholar 

  39. Shen SL, Wang ZF, Cheng WC (2017) Estimation of lateral displacement induced by jet grouting in clayey soils. Geotech ICE 67(7):621–630. https://doi.org/10.1680/geot./16-P-159

    Article  Google Scholar 

  40. Shen SL, Wang ZF, Horpibulsuk S, Kim YH (2013) Jet grouting with a newly developed technology: the Twin-Jet method. Eng Geol 152:87–95. https://doi.org/10.1016/j.enggeo.2012.10.018

    Article  Google Scholar 

  41. Shen SL, Wang ZF, Sun WJ, Wang LB, Horpibulsuk S (2013) A field trial of horizontal jet grouting using the composite-pipe method in the soft deposits of Shanghai. Tunn Undergr Space Technol 35:142–151. https://doi.org/10.1016/j.tust.2013.01.003

    Article  Google Scholar 

  42. Tinoco J, Gomes Correia A, Cortez P (2016) Jet grouting column diameter prediction based on a data-driven approach. Eur J Environ Civil Eng 22:338–358. https://doi.org/10.1080/19648189.2016.1194329

    Article  Google Scholar 

  43. Tinoco J, Gomes Correia A, Cortez P (2014) Support vector machines applied to uniaxial compressive strength prediction of jet grouting columns. Comput Geotech. https://doi.org/10.1016/j.compgeo.2013.08.010

    Article  Google Scholar 

  44. Wang J, Yang X, Cai H, Tan W, Jin C, Li L (2016) Discrimination of breast cancer with microcalcifications on mammography by deep learning. Sci Rep. https://doi.org/10.1038/srep27327

    Article  Google Scholar 

  45. Wang Z-F, Shen S-L, Ho C-E, Kim Y-H (2013) Investigation of field-installation effects of horizontal twin-jet grouting in Shanghai soft soil deposits. Can Geotech J 50:288–297. https://doi.org/10.1139/cgj-2012-0199

    Article  Google Scholar 

  46. Wang ZF, Shen SL, Modoni G, Zhou A (2020) Excess pore water pressure caused by the installation of jet grouting columns in clay. Comput Geotech 125:103667. https://doi.org/10.1016/j.compgeo.2020.103667

    Article  Google Scholar 

  47. Wang ZF, Shen SL, Modoni G (2019) Enhancing discharge of spoil to mitigate disturbance induced by horizontal jet grouting in clayey soil: theoretical model and application. Comput Geotech 111:222–228. https://doi.org/10.1016/j.compgeo.2019.03.012

    Article  Google Scholar 

  48. Wang ZF, Shen JS, Yang J (2012) Estimation of the diameter of jet-grouted column based on turbulent kinematic flow theory, in: grouting and deep mixing 2012. Geotechnical Special Publication No. 228, Grouting and Deep Mixing 2012. Geotechnical Special Publication No. 228, American Society of Civil Engineers (ASCE), Reston, pp 2044–2051

  49. Witten IH, Frank E, Hall MA, Pal CJ (2016) Data mining: practical machine learning tools and techniques. Morgan Kaufmann series in data management systems, 4th edn, Kindle edition

  50. Wu H, Atangana Njock PG, Chen J, Shen S (2019) Numerical simulation of spudcan-soil interaction using an improved smoothed particle hydrodynamics (SPH)method. Mar Struct. https://doi.org/10.1016/j.marstruc.2019.04.007

    Article  Google Scholar 

  51. Wu YX, Shen SL, Lyu HM, Zhou A (2020) Analyses of leakage effect of waterproof curtain during excavation dewatering. J Hydrol 583:124582. https://doi.org/10.1016/j.jhydrol.2020.124582

    Article  Google Scholar 

  52. Yin ZY, Jin YF, Shen JS, Hicher PY (2018) Optimization techniques for identifying soil parameters in geotechnical engineering: comparative study and enhancement. Int J Numer Anal Methods Geomech 42:70–94. https://doi.org/10.1002/nag.2714

    Article  Google Scholar 

  53. Yin Z-Y, Jin YF, Shen SL, Huang HW (2017) An efficient optimization method for identifying parameters of soft structured clay by an enhanced genetic algorithm and elastic-viscoplastic model. Acta Geotech 12(4):849–867

    Article  Google Scholar 

  54. Yuan Y, Shen SL, Wang ZF, Wu HN (2016) Automatic pressure-control equipment for horizontal jet-grouting. Autom Constr 69:11–20. https://doi.org/10.1016/j.autcon.2016.05.025

    Article  Google Scholar 

  55. Zhang J, Wang P, Gao RX (2019) Deep learning-based tensile strength prediction in fused deposition modeling. Comput Ind 107:11–21. https://doi.org/10.1016/j.compind.2019.01.011

    Article  Google Scholar 

  56. Zhang N, Shen SL, Zhou AN, Xu YS (2019) Investigation on performance of neural network using quadratic relative error cost function. IEEE Access 7:106642–106652. https://doi.org/10.1109/ACCESS.2019.2930520

    Article  Google Scholar 

  57. Zhang P, Yin Z-Y, Jin YF, Chan T (2019) A novel hybrid surrogate intelligent model for creep index prediction based on particle swarm optimization and random forest. Eng Geol. https://doi.org/10.1016/j.enggeo.2019.105328

    Article  Google Scholar 

Download references

Acknowledgements

The research work described herein was funded by “The Pearl River Talent Recruitment Program” in 2019 for Professor Shui-Long Shen (Grant No. 2019CX01G338), Guangdong Province and the Research Funding of Shantou University for New Faculty Member (Grant No. NTF19024-2019), and the National Natural Science Foundation of China (NSFC) (Grant No. 41372283). The financial supports mentioned above are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shui-Long Shen or Pierre Guy Atangana Njock.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, SL., Atangana Njock, P.G., Zhou, A. et al. Dynamic prediction of jet grouted column diameter in soft soil using Bi-LSTM deep learning. Acta Geotech. 16, 303–315 (2021). https://doi.org/10.1007/s11440-020-01005-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-020-01005-8

Keywords

Navigation