[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Stable α-CsPbI3 with extremely red emission for expanding the color gamut

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

The wider color gamut represents the better reproducibility of the real natural colors. Perovskite materials exhibit promising potential in full-color wide-gamut displays because of the wide tunability and high saturability of their photon emission. However, the full-color wide gamut (>100% Rec.2020) has not been constructed due to the lack of the extreme red primary color (∼700 nm). Herein, the widest color gamut is realized, wherein α-CsPbI3 is used to generate the extreme red primary color. An in-situ encapsulation approach is advised to stabilize α-CsPbI3 at room temperature by means of polyvinylpyrrolidone (PVP). The α-CsPbI3 encapsulated by PVP (denoted as P-CPI) shows highly saturated (FWHM (full width at half maximum) ∼28 nm) and extremely (∼697 nm) red emission. The green emission is provided by P-CPBr (CsPbBr3 with PVP) which is also synthesized using the universal in-situ encapsulation approach. With the assistance of a commercial GaN chip, the RGB gamut is extended to the widest (151% NTSC, 113% Rec.2020).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thomas J B, Hardeberg J Y, Trémeau A. Advanced Color Image Processing and Analysis. New York: Springer, 2013. 81–118

    Book  Google Scholar 

  2. Chen H W, Zhu R D, He J, et al. Going beyond the limit of an LCD’s color gamut. Light Sci Appl, 2017, 6: e17043

    Article  Google Scholar 

  3. Kim M C. Optically adjustable display color gamut in time-sequential displays using LED/Laser light sources. Displays, 2006, 27: 137–144

    Article  Google Scholar 

  4. Sharma G. LCDs versus CRTs-color-calibration and gamut considerations. Proc IEEE, 2002, 90: 605–622

    Article  Google Scholar 

  5. Jang E, Jun S, Jang H, et al. White-light-emitting diodes with quantum dot color converters for display backlights. Adv Mater, 2010, 22: 3076–3080

    Article  Google Scholar 

  6. Dai X L, Deng Y Z, Peng X G, et al. Quantum-dot light-emitting diodes for large-area displays: towards the dawn of commercialization. Adv Mater, 2017, 29: 1607022

    Article  Google Scholar 

  7. Yu D J, Cao F, Gao Y J, et al. Room-temperature ion-exchange-mediated self-assembly toward formamidinium perovskite nanoplates with finely tunable, ultrapure green emissions for achieving Rec.2020 displays. Adv Funct Mater, 2018, 28: 1800248

    Article  Google Scholar 

  8. Zhao M, Zhang Q Y, Xia Z. Narrow-band emitters in LED backlights for liquid-crystal displays. Mater Today, 2020, 40: 246–265

    Article  Google Scholar 

  9. Liao H X, Zhao M, Zhou Y Y, et al. Polyhedron transformation toward stable narrow-band green phosphors for wide-color-gamut liquid crystal display. Adv Funct Mater, 2019, 29: 1901988

    Article  Google Scholar 

  10. Zhou G J, Xu Y, Xia Z G. Perovskite multiple quantum wells on layered materials toward narrow-band green emission for backlight display applications. ACS Appl Mater Interfaces, 2020, 12: 27386–27393

    Article  Google Scholar 

  11. Han B N, Cai B, Shan Q S, et al. Stable, efficient red perovskite light-emitting diodes by (α, δ)-CsPbI3 phase engineering. Adv Funct Mater, 2018, 28: 1804285

    Article  Google Scholar 

  12. Lin K B, Xing J, Quan L N, et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature, 2018, 562: 245–248

    Article  Google Scholar 

  13. Quan L N, García de Arquer F P, Sabatini R P, et al. Perovskites for light emission. Adv Mater, 2018, 30: 1801996

    Article  Google Scholar 

  14. Stranks S D, Hoye R L Z, Di D, et al. The physics of light emission in halide perovskite devices. Adv Mater, 2018, 31: 1803336

    Article  Google Scholar 

  15. Kim Y, Cho H, Heo J H, et al. Multicolored organic/inorganic hybrid perovskite light-emitting diodes. Adv Mater, 2015, 27: 1248–1254

    Article  Google Scholar 

  16. Kim H P, Kim J, Kim B S, et al. Retracted: high-efficiency, blue, green, and near-infrared light-emitting diodes based on triple cation perovskite. Adv Opt Mater, 2017, 5: 1600920

    Article  Google Scholar 

  17. Vashishtha P, Halpert J E. Field-driven ion migration and color instability in red-emitting mixed halide perovskite nanocrystal light-emitting diodes. Chem Mater, 2017, 29: 5965–5973

    Article  Google Scholar 

  18. Wang J P, Wang N N, Jin Y Z, et al. Interfacial control toward efficient and low-voltage perovskite light-emitting diodes. Adv Mater, 2015, 27: 2311–2316

    Article  MathSciNet  Google Scholar 

  19. Cao Z, Hu F R, Zhang C F, et al. Optical studies of semiconductor perovskite nanocrystals for classical optoelectronic applications and quantum information technologies: a review. Adv Photon, 2020, 2: 054001

    Article  Google Scholar 

  20. Liang D, Peng Y L, Fu Y P, et al. Color-pure violet-light-emitting diodes based on layered lead halide perovskite nanoplates. ACS Nano, 2016, 10: 6897–6904

    Article  Google Scholar 

  21. Yang X L, Zhang X W, Deng J X, et al. Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation. Nat Commun, 2018, 9: 570

    Article  Google Scholar 

  22. Xing G C, Mathews N, Lim S S, et al. Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nat Mater, 2014, 13: 476–480

    Article  Google Scholar 

  23. Cao Y, Wang N N, Tian H, et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature, 2018, 562: 249–253

    Article  Google Scholar 

  24. Deng W, Xu X Z, Zhang X J, et al. Organometal halide perovskite quantum dot light-emitting diodes. Adv Funct Mater, 2016, 26: 4797–4802

    Article  Google Scholar 

  25. Wang P Y, Zhang X W, Zhou Y Q, et al. Solvent-controlled growth of inorganic perovskite films in dry environment for efficient and stable solar cells. Nat Commun, 2018, 9: 2225

    Article  Google Scholar 

  26. Zhang S T, Yi C, Wang N N, et al. Efficient red perovskite light-emitting diodes based on solution-processed multiple quantum wells. Adv Mater, 2017, 29: 1606600

    Article  Google Scholar 

  27. Lu M, Zhang X Y, Zhang Y, et al. Simultaneous strontium doping and chlorine surface passivation improve luminescence intensity and stability of CsPbI3 nanocrystals enabling efficient light-emitting devices. Adv Mater, 2018, 30: 1804691

    Article  Google Scholar 

  28. Wang K, Jin Z W, Liang L, et al. All-inorganic cesium lead iodide perovskite solar cells with stabilized efficiency beyond 15. Nat Commun, 2018, 9: 4544

    Article  Google Scholar 

  29. Li B, Zhang Y N, Fu L, et al. Surface passivation engineering strategy to fully-inorganic cubic CsPbI3 perovskites for high-performance solar cells. Nat Commun, 2018, 9: 1076

    Article  Google Scholar 

  30. Wang D, Wu D, Dong D, et al. Polarized emission from CsPbX3 perovskite quantum dots. Nanoscale, 2016, 8: 11565–11570

    Article  Google Scholar 

  31. Cheng R, Shen H X, Chen Z C, et al. Preparation of heterostructure quantum dots towards wide-colour-gamut display. Mater Lett, 2019, 254: 171–174

    Article  Google Scholar 

  32. Xie Q F, Wu D, Wang X Z, et al. Branched capping ligands improve the stability of cesium lead halide (CsPbBr3) perovskite quantum dots. J Mater Chem C, 2019, 7: 11251–11257

    Article  Google Scholar 

  33. Ma K, Du X Y, Zhang Y W, et al. In situ fabrication of halide perovskite nanocrystals embedded in polymer composites via microfluidic spinning microreactors. J Mater Chem C, 2017, 5: 9398–9404

    Article  Google Scholar 

  34. Park D H, Han J S, Kim W, et al. Facile synthesis of thermally stable CsPbBr3 perovskite quantum dot-inorganic SiO2 composites and their application to white light-emitting diodes with wide color gamut. Dyes Pigments, 2018, 149: 246–252

    Article  Google Scholar 

  35. Qasim K, Wang B P, Zhang Y P, et al. Solution-processed extremely efficient multicolor perovskite light-emitting diodes utilizing doped electron transport layer. Adv Funct Mater, 2017, 27: 1606874

    Article  Google Scholar 

  36. Wright A D, Verdi C, Milot R L, et al. Electron-phonon coupling in hybrid lead halide perovskites. Nat Commun, 2016, 7: 11755

    Article  Google Scholar 

  37. Savenije T J, PonsecaJr. C S, Kunneman L, et al. Thermally activated exciton dissociation and recombination control the carrier dynamics in organometal halide perovskite. J Phys Chem Lett, 2014, 5: 2189–2194

    Article  Google Scholar 

  38. Xing G C, Wu B, Wu X Y, et al. Transcending the slow bimolecular recombination in lead-halide perovskites for electroluminescence. Nat Commun, 2017, 8: 14558

    Article  Google Scholar 

  39. D’Innocenzo V, Grancini G, Alcocer M J P, et al. Excitons versus free charges in organo-lead tri-halide perovskites. Nat Commun, 2014, 5: 3586

    Article  Google Scholar 

  40. Yang Z, Surrente A, Galkowski K, et al. Impact of the halide cage on the electronic properties of fully inorganic cesium lead halide perovskites. ACS Energy Lett, 2017, 2: 1621–1627

    Article  Google Scholar 

  41. Han T H, Lee J, Choi Y J, et al. Surface-2D/bulk-3D heterophased perovskite nanograins for long-term-stable light-emitting diodes. Adv Mater, 2019, 32: 1905674

    Article  Google Scholar 

  42. Saba M, Cadelano M, Marongiu D, et al. Correlated electron-hole plasma in organometal perovskites. Nat Commun, 2014, 5: 5049

    Article  Google Scholar 

  43. Shi J J, Zhang H Y, Li Y M, et al. Identification of high-temperature exciton states and their phase-dependent trapping behaviour in lead halide perovskites. Energy Environ Sci, 2018, 11: 1460–1469

    Article  Google Scholar 

  44. Draguta S, Thakur S, Morozov Y V, et al. Spatially non-uniform trap state densities in solution-processed hybrid perovskite thin films. J Phys Chem Lett, 2016, 7: 715–721

    Article  Google Scholar 

  45. Peng Z R, Lin R F, Li Z, et al. Two-dimensional materials-based integrated hardware. Sci China Inf Sci, 2023, 66: 160401

    Article  Google Scholar 

  46. Ning H K, Yu Z H, Li T T, et al. From lab to fab: path forward for 2D material electronics. Sci China Inf Sci, 2023, 66: 160411

    Article  Google Scholar 

  47. Yamada Y, Nakamura T, Endo M, et al. Photocarrier recombination dynamics in perovskite CH3 NH3PbI3 for solar cell applications. J Am Chem Soc, 2014, 136: 11610–11613

    Article  Google Scholar 

  48. Chen Z M, Li Z C, Zhang C Y, et al. Recombination dynamics study on nanostructured perovskite light-emitting devices. Adv Mater, 2018, 30: 1801370

    Article  Google Scholar 

  49. Zhang Y, Gao L, Wei X, et al. Spectroscopic perception of trap states on the performance of methylammonium and formamidinium lead iodide perovskite solar cells. Adv Mater, 2021, 33: 2102241

    Article  Google Scholar 

  50. de Quilettes D W, Vorpahl S M, Stranks S D, et al. Impact of microstructure on local carrier lifetime in perovskite solar cells. Science, 2015, 348: 683–686

    Article  Google Scholar 

  51. Wang N N, Cheng L, Ge R, et al. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nat Photon, 2016, 10: 699–704

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key Research and Development Program of China (Grant Nos. 2019YFA0308000, 2017YFA0205700) and National Natural Science Foundation of China (Grant Nos. 91963130, 61927808).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhenhua Ni, Junpeng Lu or Hongwei Liu.

Additional information

Supporting information Appendixes A and B. The supporting information is available online at info.scichina.com and link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Wei, X., Gao, L. et al. Stable α-CsPbI3 with extremely red emission for expanding the color gamut. Sci. China Inf. Sci. 67, 152405 (2024). https://doi.org/10.1007/s11432-023-3944-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-023-3944-3

Keywords

Navigation