[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Efficient heterogeneous integration of InP/Si and GaSb/Si templates with ultra-smooth surfaces

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Heterogeneous integration of InP and GaSb on Si substrates holds a huge potential interest in near-infrared and mid-infrared optoelectronic devices. In this study, 2-inch 180-nm-thick InP and 185-nm-thick GaSb thin layers were successfully transferred onto the Si substrates to form high-quality and ultra-smooth InP/Si and GaSb/Si templates using molecular beam epitaxy (MBE) and the ion-slicing technique together with selective chemical etching. The relocation of the implantation-introduced damage in the sacrificial layer enables the transfer of relatively defect-free InP and GaSb thin films. The sacrificial layers were completely etched off by selective chemical etching, leaving ultra-smooth epitaxial surfaces with a roughness of 0.2 nm for the InP/Si template and 0.9 nm for the GaSb/Si template, respectively. Thus, the chemical mechanical polishing (CMP) process was not required to smooth the surface which usually introduces particles and chemical contaminations on the transferred templates. Furthermore, the donor substrate is not consumed and can be recycled to reduce the cost, which provides a paradigm for the sustainable and economic development of the Si integration platform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Keyvaninia S, Verstuyft S, van Landschoot L, et al. Heterogeneously integrated III-V/silicon distributed feedback lasers. Opt Lett, 2013, 38: 5434–5437

    Article  Google Scholar 

  2. Hao Y, Xiang S Y, Han G Q, et al. Recent progress of integrated circuits and optoelectronic chips. Sci China Inf Sci, 2021, 64: 201401

    Article  Google Scholar 

  3. Fujii T, Takeda K, Nishi H, et al. Multiwavelength membrane laser array using selective area growth on directly bonded InP on SiO2/Si. Optica, 2020, 7: 838

    Article  Google Scholar 

  4. Carter A D, Urteaga M E, Griffith Z M, et al. Q-band InP/CMOS receiver and transmitter beamformer channels fabricated by 3D heterogeneous integration. In: Proceedings of IEEE MTT-S International Microwave Symposium, 2017. 1760–1763

  5. Jonsson A, Svensson J, Wernersson L E. A self-aligned gate-last process applied to all-III-V CMOS on Si. IEEE Electron Device Lett, 2018, 39: 935–938

    Article  Google Scholar 

  6. Wang R J, Vasiliev A, Muneeb M, et al. III-V-on-silicon photonic integrated circuits for spectroscopic sensing in the 2–4 µm wavelength range. Sensors, 2017, 17: 1788

    Article  Google Scholar 

  7. Moutanabbir O, Gösele U. Heterogeneous integration of compound semiconductors. Annu Rev Mater Res, 2010, 40: 469–500

    Article  Google Scholar 

  8. Phelan R, Byrne D, O’Carroll J, et al. Mid-infrared inp-based discrete mode laser diodes. In: Optoelectronic Devices. Cambridge: Cambridge University Press, 2019

    Google Scholar 

  9. Turner W J, Reese W E, Pettit G D. Exciton absorption and emission in InP. Phys Rev, 1964, 136: 1467–1470

    Article  Google Scholar 

  10. Doerr C R. Silicon photonic integration in telecommunications. Front Phys, 2015, 3: 37

    Article  Google Scholar 

  11. Guan H, Novack A, Galfsky T, et al. Widely-tunable, narrow-linewidth III-V/silicon hybrid external-cavity laser for coherent communication. Opt Express, 2018, 26: 7920–7933

    Article  Google Scholar 

  12. Higurashi E. Heterogeneous integration based on low-temperature bonding for advanced optoelectronic devices. Jpn J Appl Phys, 2018, 57: 04FA02

    Article  Google Scholar 

  13. Hjort K. Transfer of InP epilayers by wafer bonding. J Cryst Growth, 2004, 268: 346–358

    Article  Google Scholar 

  14. Tong Q Y, Chao Y L, Huang L J, et al. Low temperature InP layer transfer. Electron Lett, 1999, 35: 341

    Article  Google Scholar 

  15. Christiansen S H, Singh R, Gosele U. Wafer direct bonding: from advanced substrate engineering to future applications in micro/nanoelectronics. Proc IEEE, 2006, 94: 2060–2106

    Article  Google Scholar 

  16. Levinshtein M, Rumyantsev S, Shur M. Handbook Series on Semiconductor Parameters. Singapor: World Scientific, 1996

    Book  Google Scholar 

  17. Akahane K, Yamamoto N, Gozu S, et al. Heteroepitaxial growth of GaSb on Si(001) substrates. J Cryst Growth, 2004, 264: 21–25

    Article  Google Scholar 

  18. Arpapay B, Suyolcu Y E, Çorapçıoğlu G, et al. A comparative study on GaSb epilayers grown on nominal and vicinal Si(100) substrates by molecular beam epitaxy. Semicond Sci Technol, 2020, 36: 025011

    Article  Google Scholar 

  19. Yokoyama M, Yokoyama H, Takenaka M, et al. Ultrathin body GaSb-on-insulator p-channel metal-oxide-semiconductor field-effect transistors on Si fabricated by direct wafer bonding. Appl Phys Lett, 2015, 106: 073503

    Article  Google Scholar 

  20. Singh R, Radu I, Scholz R, et al. Low temperature InP layer transfer onto Si by helium implantation and direct wafer bonding. Semicond Sci Technol, 2006, 21: 1311–1314

    Article  Google Scholar 

  21. Lin J J, You T G, Wang M, et al. Efficient ion-slicing of InP thin film for Si-based hetero-integration. Nanotechnology, 2018, 29: 504002

    Article  Google Scholar 

  22. Mazen F, Sollier S, Madeira F, et al. Fracture in epitaxial InP on Si for InGaAs on insulator fabrication via smart cutTM. In: Proceedings of the 21st International Conference on Ion Implantation Technology (IIT), 2016. 1–4

  23. Clawson A R. Guide to references on III-V semiconductor chemical etching. Mater Sci Eng-R-Rep, 2001, 31: 1–438

    Article  Google Scholar 

  24. Hjort K. Sacrificial etching of III-V compounds for micromechanical devices. J Micromech Microeng, 1996, 6: 370–375

    Article  Google Scholar 

  25. Dier O, Lin C, Grau M, et al. Selective and non-selective wet-chemical etchants for GaSb-based materials. Semicond Sci Technol, 2004, 19: 1250–1253

    Article  Google Scholar 

  26. Grzesik M, Vangala S R, Goodhue W D. Indirect wafer bonding and epitaxial transfer of GaSb-based materials. J Elec Materi, 2013, 42: 679–683

    Article  Google Scholar 

  27. Bruel M. Application of hydrogen ion beams to silicon on insulator material technology. Nucl Instrum Method Phys Res Sect B-Beam Interact Mater Atoms, 1996, 108: 313–319

    Article  Google Scholar 

  28. Feng X Q, Huang Y. Mechanics of smart-cut(r) technology. Int J Solids Struct, 2004, 41: 4299–4320

    Article  MATH  Google Scholar 

  29. Martienssen W. Springer Handbook of Condensed Matter and Materials Data. Berlin: Springer, 2005

    Book  Google Scholar 

  30. Aspnes D E, Studna A A. Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs, and InSb from 1.5 to 6.0 eV. Phys Rev B, 1983, 27: 985–1009

    Article  Google Scholar 

  31. Georgiev N, Mozume T. Raman scattering analysis of InGaAs/AlAsSb short-period superlattices. Appl Surf Sci, 2000, 159: 520–527

    Article  Google Scholar 

  32. Chen L C, Tyan S L, Wu M C. Raman scattering of InAs1−xy SbxPy quaternary alloys. Jpn J Appl Phys, 1998, 37: 1365–1366

    Article  Google Scholar 

  33. Cai L C, Chen H, Bao C L, et al. Raman spectroscopic studies of InAs epilayers grown on the GaAs (001) substrates. J Cryst Growth, 2003, 253: 112–116

    Article  Google Scholar 

  34. Xu D P, Litvinchuk A P, Wang X, et al. Structure stability of short-period InAs/AlSb superlattices. J Cryst Growth, 2003, 251: 547–550

    Article  Google Scholar 

  35. Milekhin A, Werninghaus T, Zahn D R T, et al. Raman and infrared spectroscopical investigation of the optical vibrational modes in GaSb/AlSb superlattices. Eur Phys J B, 1998, 6: 295–299

    Article  Google Scholar 

  36. Qiao Z X, Yun S, He W Y, et al. Raman scattering of polycrystalline GaSb thin films grown by the co-evaporation process. Chin Phys B, 2009, 18: 2012–2015

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key RD Program of China (Grant No. 2017YFE0131300), National Natural Science Foundation of China (Grant Nos. U1732268, 61874128, 61851406, 11905282), Frontier Science Key Program of CAS (Grant Nos. QYZDY-SSW-JSC032, ZDBS-LY-JSC009), Program of Shanghai Academic Research Leader (Grant No. 19XD1404600), Shanghai Youth Top Talent Program, Shanghai Sailing Program (Grant Nos. 19YF1456200, 19YF1456400), K. C. Wong Education Foundation (Grant No. GJTD-2019-11), and NCBiR within the Polish-China (Grant No. WPC/130/NIR-Si/2018).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiajie Lin, Shumin Wang or Xin Ou.

Additional information

Jin T T and Lin J J have the same contribution to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, T., Lin, J., You, T. et al. Efficient heterogeneous integration of InP/Si and GaSb/Si templates with ultra-smooth surfaces. Sci. China Inf. Sci. 65, 182402 (2022). https://doi.org/10.1007/s11432-021-3398-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-021-3398-y

Keywords

Navigation