Article PDF
Avoid common mistakes on your manuscript.
References
Geng Q C, Zhou Z, Cao X C. Survey of recent progress in semantic image segmentation with CNNs. Sci China Inf Sci, 2018, 61: 051101
Li X L, Shi J H, Dong Y S, et al. A survey on scene image classification (in Chinese). Sci Sin Inform, 2015, 45: 827–848
Zhao H S, Shi J P, Qi X J, et al. Pyramid scene parsing network. In: Proceedings of CVPR, 2016. 6230–6239
Szegedy C, Vanhoucke V, Ioffe S, et al. Rethinking the inception architecture for computer vision. In: Proceedings of CVPR, 2016. 2818–2826
Ma N N, Zhang X Y, Zheng H T, et al. ShuffleNet V2: practical guidelines for efficient CNN architecture design. In: Proceedings of ECCV, 2018. 122–138
Hu J, Shen L, Sun G, et al. Squeeze-and-excitation networks. In: Proceedings of CVPR, 2018. 7132–7141
Cordts M, Omran M, Ramos S, et al. The cityscapes dataset for semantic urban scene understanding. In: Proceedings of CVPR, 2016. 3213–3223
Howard A G, Zhu M L, Chen B, et al. Mobilenets: efficient convolutional neural networks for mobile vision applications. 2017. ArXiv: 1704.04861
Badrinarayanan V, Kendall A, Cipolla R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans Pattern Anal Mach Intell, 2017, 39: 2481–2495
Paszke A, Chaurasia A, Kim S, et al. Enet: a deep neural network architecture for real-time semantic segmentation. 2016. ArXiv: 1606.02147
Author information
Authors and Affiliations
Corresponding author
Additional information
Access method: LEDNet can be downloaded from https://github.com/xiaoyufenfei/LEDNet.
Rights and permissions
About this article
Cite this article
Zhou, Q., Wang, Y., Liu, J. et al. An open-source project for real-time image semantic segmentation. Sci. China Inf. Sci. 62, 227101 (2019). https://doi.org/10.1007/s11432-019-2685-1
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11432-019-2685-1