Abstract
For maneuvering target tracking with sensor faults, consensus-based distributed state estimation problems are studied herein. The communication status of the nonlinear system composed of multiple agents is described using the graph theory. Considering the impacts caused by sensor failures on measurement equations, a weighted average consensus-based unscented information filter (UIF) algorithm is proposed to improve tracking accuracy. Moreover, the estimation error for the investigated nonlinear system has been analyzed based on the stochastic boundedness theory to evaluate the proposed algorithm’s performance and feasibility. Finally, simulation results are presented to assert the validity of the method.
Similar content being viewed by others
References
Sobhani B, Paolini E, Giorgetti A, et al. Target tracking for UWB multistatic radar sensor networks. IEEE J Sel Top Signal Process, 2014, 8: 125–136
Wu K, Cai Z, Zhao J, et al. Target tracking based on a nonsingular fast terminal sliding mode guidance law by fixed-wing UAV. Appl Sci, 2017, 7: 333
Chen H Y, Zhang S L, Liu M Q, et al. An artificial measurements-based adaptive filter for energy-efficient target tracking via underwater wireless sensor networks. Sensors, 2017, 17: 1–19
Wang Y H, Lin P, Hong Y G. Distributed regression estimation with incomplete data in multi-agent networks. Sci China Inf Sci, 2018, 61: 092202
Dong X, Yu B, Shi Z, et al. Time-varying formation control for unmanned aerial vehicles: theories and applications. IEEE Trans Control Syst Technol, 2015, 23: 340–348
Dong X W, Zhou Y, Ren Z, et al. Time-varying formation tracking for second-order multi-agent systems subjected to switching topologies with application to quadrotor formation flying. IEEE Trans Ind Electron, 2017, 64: 5014–5024
Dong X W, Zhou Y, Ren Z, et al. Time-varying formation control for unmanned aerial vehicles with switching interaction topologies. Control Eng Practic, 2016, 46: 26–36
Fang H, Shang C S, Chen J. An optimization-based shared control framework with applications in multi-robot systems. Sci China Inf Sci, 2018, 61: 014201
Li Z K, Ren W, Liu X D, et al. Distributed containment control of multi-agent systems with general linear dynamics in the presence of multiple leaders. Int J Robust Nonlinear Control, 2013, 23: 534–547
Blackman S S. Abstracts of previous tutorials in this series: multiple hypothesis tracking for multiple target tracking. IEEE Aerosp Electron Syst Mag, 2016, 31: 90–96
Milan A, Schindler K, Roth S. Multi-target tracking by discrete-continuous energy minimization. IEEE Trans Pattern Anal Mach Intell, 2016, 38: 2054–2068
Yu W W, Li C J, Yu X H, et al. Economic power dispatch in smart grids: a framework for distributed optimization and consensus dynamics. Sci China Inf Sci, 2018, 61: 012204
Peng Z H, Wang D, Wang H, et al. Distributed cooperative tracking of uncertain nonlinear multi-agent systems with fast learning. Neurocomputing, 2014, 129: 494–503
Qin J H, Ma Q C, Gao H J, et al. Fault-tolerant cooperative tracking control via integral sliding mode control technique. IEEE/ASME Trans Mechatron, 2018, 23: 342–351
Li J Z. Distributed cooperative tracking of multi-agent systems with actuator faults. Trans Inst Meas Control, 2015, 37: 1041–1048
Li W L, Jia Y M, Du J P. Distributed Kalman consensus filter with intermittent observations. J Franklin Inst, 2015, 352: 3764–3781
Tan Q K, Dong X W, Liu F, et al. Weighted average consensus-based cubature information filtering for mobile sensor networks with intermittent observations. In: Proceedings of Chinese Control Conference, Dalian, 2017. 8946–8951
Ding J L, Xiao J, Zhang Y. Distributed algorithm-based CKF and its applications to target tracking. Control Decis, 2015, 30: 296–302
Chen B, Ho D W C, Zhang W A, et al. Networked fusion estimation with bounded noises. IEEE Trans Autom Control, 2017, 62: 5415–5421
Battistelli G, Chisci L, Mugnai G, et al. Consensus-based linear and nonlinear filtering. IEEE Trans Autom Control, 2015, 60: 1410–1415
Zhang H S, Song X X, Shi L. Convergence and mean square stability of suboptimal estimator for systems with measurement packet dropping. IEEE Trans Autom Control, 2012, 57: 1248–1253
Du Y K, Ju H Y, Yong H K, et al. Distributed information fusion filter with intermittent observations. In: Proceedings of the Conference on Information Fusion, Edinburgh, 2010
Li W Y, Wei G L, Han F, et al. Weighted average consensus-based unscented kalman filtering. IEEE Trans Cybern, 2016, 46: 558–567
Battistelli G, Chisci L. Stability of consensus extended Kalman filter for distributed state estimation. Automatica, 2016, 68: 169–178
Li L, Xia Y Q. Stochastic stability of the unscented Kalman filter with intermittent observations. Automatica, 2012, 48: 978–981
Chen J, Sun J, Wang G. Stochastic stability of extended filtering for non-linear systems with measurement packet losses. IET Control Theory Appl, 2013, 7: 2048–2055
Reif K, Gunther S, Yaz E, et al. Stochastic stability of the discrete-time extended Kalman filter. IEEE Trans Autom Control, 1999, 44: 714–728
Acknowledgements
This work was supported by National Natural Science Foundation of China (Grant Nos. 61873011, 61803014, 61503009, 61333011), Beijing Natural Science Foundation (Grant No. 4182035), Young Elite Scientists Sponsorship Program by CAST (Grant No. 2017QNRC001), Aeronautical Science Foundation of China (Grant Nos. 2016ZA51005, 20170151001), Special Research Project of Chinese Civil Aircraft, State Key Laboratory of Intelligent Control and Decision of Complex Systems, and Fundamental Research Funds for the Central Universities (Grant No. YWF-18-BJ-Y-73).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Yu, Y., Peng, S., Dong, X. et al. UIF-based cooperative tracking method for multi-agent systems with sensor faults. Sci. China Inf. Sci. 62, 10202 (2019). https://doi.org/10.1007/s11432-018-9581-y
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11432-018-9581-y