Abstract
The requirement of the fifth generation (5G) wireless communication for high throughput motivates the wireless industry to use the mmWave (millimeter wave) communications for its wide bandwidth advantage. To compensate the heavy path loss and increase the communications capacity, phased array beamforming and massive multiple-input multiple-output (MIMO) techniques are employed at both the user equipment (UE) and base stations (BS). Considering the commercial requirements, 5G mmWave large array systems should be implemented in an energy- and cost-efficient way with a small form factor. To address above issues and realize a reliable communications link, taking into account the particular characteristics of 5G mmWave systems, this paper firstly examines the design challenges and trade-offs in system implementations, then some of the design strategies are summarized. At last, recent advance in RF front-end circuits and receiver sub-systems is then highlighted.
Similar content being viewed by others
References
Cui Q M, Gu Y, Ni W, et al. Effective capacity of licensed-assisted access in unlicensed spectrum for 5G: from theory to application. IEEE J Sel Area Commun, 2017, 35: 1754–1767
Rappaport T S, Sun S, Mayzus R, et al. Millimeter wave mobile communications for 5G cellular: it will work. IEEE Access, 2013, 1: 335–349
Ericsson white paper. 5G radio access. 2016. http://www.ericsson.com/assets/local/publications/white-papers/ wp-5g.pdf
Onoe S. Evolution of 5G mobile technology toward 2020 and beyond. In: Proceedings of IEEE International Solid-State Circuit Conference, San Francisco, 2016
Poon A S, Taghivand M. Supporting and enabling circuits for antenna arrays in wireless communications. Proc IEEE, 2012, 100: 2207–2218
Gao X Y, Dai L L, Han S F, et al. Energy-efficient hybrid analog and digital precoding for mmWave MIMO systems with large antenna arrays. IEEE J Sel Area Commun, 2016, 34: 998–1008
Gao L, Zhang S, Liu Z Y, et al. An overview of multi-antenna technologies for space-ground integrated networks. Sci China Inf Sci, 2016, 59: 121301
Wang C X, Wu S B, Bai L, et al. Recent advances and future challenges for massive MIMO channel measurements and models. Sci China Inf Sci, 2016, 59: 021301
Roh W, Seol J, Park J, et al. Millimeter-wave beamforming as an enabling technology for 5G cellular communications: theoretical feasibility and prototype results. IEEE Commun Mag, 2014, 52: 106–113
Vook F, Ghosh A, Thomas T. MIMO and bemaforming solutions for 5G technology. In: Proceedings of IEEE MTT-S International Microwave Symposium, Tampa, 2014
Li L M, Niu X K, Chai Y, et al. The path to 5G: mmWave aspects. J Commun Inf Netw, 2016, 2: 1–18
Boers M, Afshar B, Vassiliou I, et al. A 16TX/RX 60 GHz 802.11ad chipset with single coaxial interface and polarization diversity. IEEE J Solid-State Circ, 2014, 2: 344–345
Sadhu B, Tousi Y, Hallin J, et al. A 28 GHz 32-elements phased-array transceiver IC with concurrent dual polarized beams and 1.4 degree beam-steering resolution for 5G communication. ISSCC Dig Tech Pap, 2014, 2: 128–129
Li L M, Niu X K, Chen L H, et al. Design of 60 GHz RF transceiver in CMOS: challenges and recent advances. China Commun, 2014, 11: 32–41
Hu S, Wang F, Wang H. A 28GHz/37GHz/39GHz multiband linear Doherty power amplifier for 5G massive MIMO applications. In: Proceedings of IEEE International Solid-State Circuit Conference, San Francisco, 2017
Kim S, Rebeiz G. A low-power BiCMOS 4-element phased array receiver for 76-84 GHz radars and communication systems. IEEE J Solid-State Circ, 2012, 47: 359–367
Niknejad A. mm-Wave phased array receivers. RF Blocks for Wireless Transceiver, ISSCC Short Course, 2013
Paramesh J, Bishop R, Soumyanath K, et al. A four-antenna cartesian-combining receiver in 90 nm CMOS. IEEE J Solid-State Circ, 2005, 40: 2515–2524
Heij W, Muskens H. Multi-channel receiver and optical data link for radar systems with digital beamforming. In: Proceeding of International Radar Conference, Alexandria, 1995
Emami S, Wiser R F, Ali E, et al. A 60 GHz CMOS phase-array transceiver pair for multi-Gb/s wireless communication. In: Proceedings of IEEE International Solid-State Circuits Conference, San Francisco, 2011
Okada K, Kondou K, Miyahara M, et al. Full four-channel 6.3 Gb/s 60 GHz direct-conversion transceiver with lowpower analog and digital baseband circuitry. In: Proceedings of IEEE International Solid-State Circuits Conference, San Francisco, 2012
El Ayach O, Rajagopal S, Abu-Surra S, et al. Spatially sparse precoding in millimeter wave MIMO systems. IEEE Trans Wirel Commun, 2014, 13: 1499–1513
Rusu C, Mèndez-Rial R, González-Prelcic N, et al. Low complexity hybrid precoding strategies for millimeter wave communication systems. IEEE Trans Wirel Commun, 2014, 13: 1499–1513
Yu X H, Shen J C, Zhang J, et al. Alternating minimization algorithms for hybrid precoding in millimeter wave MIMO systems. IEEE J Sel Top Signal Process, 2016, 10: 485–500
Gao X Y, Dai L L, Han S F, et al. Energy-efficient hybrid analog and digital precoding for mmWave MIMO systems with large antenna arrays. IEEE J Sel Area Commun, 2016, 34: 998–1009
Li J H, Xiao L M, Xu X B, et al. Energy-efficient Butler-matrix-based hybrid beamforming for multiuser mmWave MIMO system. Sci China Inf Sci, 2017, 60: 080304
Alkhateeb A, Leus G, Heath R W. Limited feedback hybrid precoding for multi-user millimeter wave systems. IEEE Trans Wirel Commun, 2015, 14: 6481–6494
Ni W H, Dong X D. Hybrid block diagonalization for massive multiuser MIMO systems. IEEE Trans Commun, 2016, 64: 201–211
Zhang X Y, Molisch A F, Kung S Y. Variable-phase-shift-based RF-baseband codesign for MIMO antenna selection. IEEE Trans Signal Process, 2005, 53: 4091–4103
Sohrabi F, Yu W. Hybrid digital and analog beamforming design for large-scale antenna arrays. IEEE J Sel Top Signal Process, 2016, 10: 501–513
Sohrabi F, Yu W. Hybrid analog and digital beamforming for mmWave OFDM large-scale antenna arrays. IEEE J Sel Area Commun, 2017, 35: 1432–1443
Zhang J h, Tang P, Tian L, et al. 6–100 GHz research progress and challenges from a channel perspective for fifth generation (5G) and future wireless communication. Sci China Inf Sci, 2017, 60: 080301
Adhikary A, Al Safadi E, Samimi M K, et al. Joint spatial division and multiplexing for mm-Wave channels. IEEE J Sel Area Commun, 2014, 32: 1239–1255
Cheng X T, Luo Z Q. Compensation of transmitter I/Q imbalance in millimeter-Wave SC-FDE systems. IEEE Trans Veh Technol, 2017, 66: 4472–4476
Chen X M, Fang C, Zou Y N, et al. Beamforming MIMO-OFDM systems in the presence of phase noises at millimeter- Wave frequencies. In: Proceedings of IEEE Wireless Communications and Networking Conference Workshops (WCNCW), San Francisco, 2017
Bazzi S, Xu W. Robust Bayesian precoding for mitigation of TDD hardware calibration errors. IEEE Signal Process Lett, 2016, 23: 929–933
Xia P F, Heath R W, Gonzalez-Prelcic N. Robust analog precoding designs for millimeter wave MIMO transceivers with frequency and time division duplexing. IEEE Trans Commun, 2016, 64: 4622–4634
Heath R W, Gonzalez-Prelcic N, Rangan S, et al. An overview of signal processing techniques for millimeter wave MIMO systems. IEEE J Sel Top Signal Process, 2016, 10: 436–453
Hur S, Kim T, Love D J, et al. Millimeter wave beamforming for wireless backhaul and access in small cell networks. IEEE Trans Commun, 2013, 61: 4391–4403
Alkhateeb A, El Ayach O, Leus G, et al. Channel estimation and hybrid precoding for millimeter wave cellular systems. IEEE J Sel Top Signal Process, 2014, 8: 831–846
Xiao Z Y, Xia P F, Xia X G. Codebook design for millimeter-wave channel estimation with hybrid precoding structure. IEEE Trans Wirel Commun, 2017, 16: 141–153
Kokshoorn M, Chen H, Wang P, et al. Millimeter wave MIMO channel estimation using overlapped beam patterns and rate adaptation. IEEE Trans Signal Process, 2017, 65: 601–616
Ghauch H, Kim T, Bengtsson M, et al. Subspace estimation and decomposition for large millimeter-wave MIMO systems. IEEE J Sel Top Signal Process, 2016, 10: 528–542
Lee J, Gil G T, Lee Y H. Channel estimation via orthogonal matching pursuit for hybrid MIMO systems in millimeter wave communications. IEEE Trans Commun, 2016, 64: 2370–2386
Swindlehurst A L, Ayanoglu E, Heydari P, et al. Millimeter-wave massive MIMO: the next wireless revolution? IEEE Commun Mag, 2014, 52: 56–62
Alkhateeby A, Leusz G, Heath R W. Compressed sensing based multi-user millimeter wave systems: how many measurements are needed? In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brisbane, 2015. 2909–2913
Kokshoorn M, Chen H, Li Y H, et al. Beam-On-Graph: simultaneous channel estimation in multi-user millimeter wave MIMO systems. ArXiv Preprint, arXiv:1701.00365
Rangan S. Generalized approximate message passing for estimation with random linear mixing. In: Proceedings of IEEE International Symposium on Information Theory Proceedings, St. Petersburg, 2011. 2168–2172
Gao Z, Hu C, Dai L L, et al. Channel estimation for millimeter-wave massive MIMO with hybrid precoding over frequency-selective fading channels. IEEE Commun Lett, 2016, 20: 1259–1262
Zhou Z, Fang J, Yang L X, et al. Channel estimation for millimeter-wave multiuser MIMO systems via PARAFAC decomposition. IEEE Trans Wirel Commun, 2016, 15: 7501–7516
Zhou Z, Fang J, Yang L X, et al. Low-rank tensor decomposition-aided channel estimation for millimeter wave MIMOOFDM systems. IEEE J Sel Area Commun, 2017, 35: 1524–1538
Bogale T E, Le L B, Haghighat A, et al. On the number of RF chains and phase shifters, and scheduling design with hybrid analog-digital beamforming. IEEE Trans Wirel Commun, 2016, 15: 3311–3326
Bogale T E, Le L B, Wang X B. Hybrid analog-digital channel estimation and beamforming: training-throughput tradeoff. IEEE Trans Commun, 2015, 63: 5235–5249
Hur S, Baek S, Kim B, et al. Proposal on millimeter-wave channel modeling for 5G cellular system. IEEE J Sel Top Signal Process, 2016, 10: 454–469
Zhao L, Ng D W K, Yuan J H. Multi-user precoding and channel estimation for hybrid millimeter wave systems. IEEE J Sel Area Commun, 2017, 35: 1576–1590
Shafin R, Liu L J, Zhang J Z, et al. DoA estimation and capacity analysis for 3-D millimeter wave massive-MIMO/FDMIMO OFDM systems. IEEE Trans Wirel Commun, 2016, 15: 6963–6978
Zhu G X, Huang K, Lau V K N, et al. Hybrid beamforming via the kronecker decomposition for the millimeter-Wave massive MIMO systems. ArXiv Preprint, arXiv:1704.03611
Palacios J, De Donno D, Widmer J. Tracking mm-Wave channel dynamics: fast beam training strategies under mobility. ArXiv Preprint, arXiv:1612.07957
Bae J, Lim S H, Yoo J H, et al. New beam tracking technique for millimeter wave-band communications. ArXiv Preprint, arXiv:1702.00276
Guo Y C, Tang J L, Wu G, et al. Power allocation for massive MIMO: impact of power amplifier efficiency. Sci China Inf Sci, 2016, 59: 022301
Chen L H, Li L M, Cui T J. A. V 18 dBm 60 GHz power amplifier with 24 dB gain in 65 nm LP CMOS. In: Proceedings of Asia Pacific Microwave Conference, Kaohsiung, 2012. 13–15
Floyd B. A 16–18.8 GHz sub-integer-N frequency synthesizer for 60 GHz transceiver. IEEE J Solid-State Circ, 2012, 43: 1076–1086
Li L M, Reynaert P, Steyaert M. Design and analysis of a 90 nm mm-Wave oscillator using inductive-division LC tank. IEEE J Solid-State Circ, 2009, 44: 1950–1958
Niu X K, Li L M, Wang D M. A 50 GHz VCO in 65 nm LP CMOS for mm-Wave applications. In: Proceedings of the 13th IEEE International Conference on Solid-State and Integrated Circuit Technology, Hangzhou, 2016
Mirzaei A, Heidari M, Bagheri R, et al. The quadrature LC oscillators: a complete portrait on injection locking. IEEE J Solid-State Circ, 2007, 42: 1916–1932
Miller R L. Fractional-frequency generators utilizing regenerative modulation. Proc IRE, 1939, 27: 446–457
Niu X K, Li L M, Wang D M. A compact wide-locking range divide-by-4 static divider for mm-Wave applications. In: Proceedings of Global Symposium on Millimeter Waves (GSMM) & ESA Workshop on Millimetre-Wave Technology and Applications, Espoo, 2016
Chai Y, Li L M, Zhao D X, et al. A 20-to-75 dB gain 5 dB noise figure broadband 60 GHz receiver with digital calibration. In: Proceedings of IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Taipei, 2016
Chai Y, Niu X K, He L, et al. A 60-GHz CMOS broadband receiver with digital calibration, 20-to-75-dB gain, and 5-dB noise figure. IEEE Trans Microw Theory Tech, 2017, 65: 3989–4001
Okada K, Li N, Matsushita K, et al. A 60 GHz 16QAM/8PSK/QPSK/BPSK direct-conversion transceiver for IEEE802.15.3c. IEEE J Solid-State Circ, 2011, 46: 2988–3004
Saito N, Tsukizawa T, Shirakata N, et al. A fully integrated 60 GHz CMOS transceiver chipset based on WiGig/IEEE 802.11ad with built-in self calibration for mobile usage. IEEE J Solid-State Circ, 2013, 48: 3146–3159
Li L M, Reynaert P, Steyaert M. A 60 GHz 15.7 mW static frequency divider in 90nm CMOS. In: Proceedings of ESSCIRC, Seville, 2010. 246–249
He L, Li L M, Wang Z G. A low-power wideband dB-linear variable gain amplifier with DC offset cancellation for 60 GHz receiver. In: Proceedings of the 17th Annual Wireless and Microwave Technology Conference (WAMICON), Clearwater, 2016
Okada K, Kondou K, Miyahara M, et al. Full four-channel 6.3-Gb/s 60 GHz CMOS transceiver with low-power analog and digital baseband circuitry. IEEE J Solid-State Circ, 2013, 48: 46–65
Mitomo T, Tsutsumi Y, Hoshino H, et al. A 2-Gb/s throughput CMOS transceiver chipset with in-package antenna for 60-GHz short-range wireless communication. IEEE J Solid-State Circ, 2012, 47: 3160–3171
Wu H, Wang N Y, Du Y, et al. A blocker-tolerant current mode 60-GHz receiver with 7.5-GHz bandwidth and 3.8-dB minimum NF in 65-nm CMOS. IEEE Trans Microw Theory Tech, 2015, 63: 1053–1062
Acknowledgements
This work was supported by National High-Tech Project (863) of China (Grant Nos. 2011AA010201, 2011AA010202), National Nature Science Foundation of China (Grant Nos. 61306030, 61674037), National Key R&D Program of China (Grant No. 2016YFC0800400), and Fundamental Research Funds for the Central Universities.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Li, L., Wang, D., Niu, X. et al. mmWave communications for 5G: implementation challenges and advances. Sci. China Inf. Sci. 61, 021301 (2018). https://doi.org/10.1007/s11432-017-9262-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11432-017-9262-8