[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

mmWave communications for 5G: implementation challenges and advances

  • Review
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

The requirement of the fifth generation (5G) wireless communication for high throughput motivates the wireless industry to use the mmWave (millimeter wave) communications for its wide bandwidth advantage. To compensate the heavy path loss and increase the communications capacity, phased array beamforming and massive multiple-input multiple-output (MIMO) techniques are employed at both the user equipment (UE) and base stations (BS). Considering the commercial requirements, 5G mmWave large array systems should be implemented in an energy- and cost-efficient way with a small form factor. To address above issues and realize a reliable communications link, taking into account the particular characteristics of 5G mmWave systems, this paper firstly examines the design challenges and trade-offs in system implementations, then some of the design strategies are summarized. At last, recent advance in RF front-end circuits and receiver sub-systems is then highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cui Q M, Gu Y, Ni W, et al. Effective capacity of licensed-assisted access in unlicensed spectrum for 5G: from theory to application. IEEE J Sel Area Commun, 2017, 35: 1754–1767

    Article  Google Scholar 

  2. Rappaport T S, Sun S, Mayzus R, et al. Millimeter wave mobile communications for 5G cellular: it will work. IEEE Access, 2013, 1: 335–349

    Article  Google Scholar 

  3. Ericsson white paper. 5G radio access. 2016. http://www.ericsson.com/assets/local/publications/white-papers/ wp-5g.pdf

  4. Onoe S. Evolution of 5G mobile technology toward 2020 and beyond. In: Proceedings of IEEE International Solid-State Circuit Conference, San Francisco, 2016

    Google Scholar 

  5. Poon A S, Taghivand M. Supporting and enabling circuits for antenna arrays in wireless communications. Proc IEEE, 2012, 100: 2207–2218

    Article  Google Scholar 

  6. Gao X Y, Dai L L, Han S F, et al. Energy-efficient hybrid analog and digital precoding for mmWave MIMO systems with large antenna arrays. IEEE J Sel Area Commun, 2016, 34: 998–1008

    Article  Google Scholar 

  7. Gao L, Zhang S, Liu Z Y, et al. An overview of multi-antenna technologies for space-ground integrated networks. Sci China Inf Sci, 2016, 59: 121301

    Article  Google Scholar 

  8. Wang C X, Wu S B, Bai L, et al. Recent advances and future challenges for massive MIMO channel measurements and models. Sci China Inf Sci, 2016, 59: 021301

    Google Scholar 

  9. Roh W, Seol J, Park J, et al. Millimeter-wave beamforming as an enabling technology for 5G cellular communications: theoretical feasibility and prototype results. IEEE Commun Mag, 2014, 52: 106–113

    Article  Google Scholar 

  10. Vook F, Ghosh A, Thomas T. MIMO and bemaforming solutions for 5G technology. In: Proceedings of IEEE MTT-S International Microwave Symposium, Tampa, 2014

    Google Scholar 

  11. Li L M, Niu X K, Chai Y, et al. The path to 5G: mmWave aspects. J Commun Inf Netw, 2016, 2: 1–18

    Article  Google Scholar 

  12. Boers M, Afshar B, Vassiliou I, et al. A 16TX/RX 60 GHz 802.11ad chipset with single coaxial interface and polarization diversity. IEEE J Solid-State Circ, 2014, 2: 344–345

    Google Scholar 

  13. Sadhu B, Tousi Y, Hallin J, et al. A 28 GHz 32-elements phased-array transceiver IC with concurrent dual polarized beams and 1.4 degree beam-steering resolution for 5G communication. ISSCC Dig Tech Pap, 2014, 2: 128–129

    Google Scholar 

  14. Li L M, Niu X K, Chen L H, et al. Design of 60 GHz RF transceiver in CMOS: challenges and recent advances. China Commun, 2014, 11: 32–41

    Article  Google Scholar 

  15. Hu S, Wang F, Wang H. A 28GHz/37GHz/39GHz multiband linear Doherty power amplifier for 5G massive MIMO applications. In: Proceedings of IEEE International Solid-State Circuit Conference, San Francisco, 2017

    Google Scholar 

  16. Kim S, Rebeiz G. A low-power BiCMOS 4-element phased array receiver for 76-84 GHz radars and communication systems. IEEE J Solid-State Circ, 2012, 47: 359–367

    Article  Google Scholar 

  17. Niknejad A. mm-Wave phased array receivers. RF Blocks for Wireless Transceiver, ISSCC Short Course, 2013

    Google Scholar 

  18. Paramesh J, Bishop R, Soumyanath K, et al. A four-antenna cartesian-combining receiver in 90 nm CMOS. IEEE J Solid-State Circ, 2005, 40: 2515–2524

    Article  Google Scholar 

  19. Heij W, Muskens H. Multi-channel receiver and optical data link for radar systems with digital beamforming. In: Proceeding of International Radar Conference, Alexandria, 1995

    Google Scholar 

  20. Emami S, Wiser R F, Ali E, et al. A 60 GHz CMOS phase-array transceiver pair for multi-Gb/s wireless communication. In: Proceedings of IEEE International Solid-State Circuits Conference, San Francisco, 2011

    Google Scholar 

  21. Okada K, Kondou K, Miyahara M, et al. Full four-channel 6.3 Gb/s 60 GHz direct-conversion transceiver with lowpower analog and digital baseband circuitry. In: Proceedings of IEEE International Solid-State Circuits Conference, San Francisco, 2012

    Google Scholar 

  22. El Ayach O, Rajagopal S, Abu-Surra S, et al. Spatially sparse precoding in millimeter wave MIMO systems. IEEE Trans Wirel Commun, 2014, 13: 1499–1513

    Article  Google Scholar 

  23. Rusu C, Mèndez-Rial R, González-Prelcic N, et al. Low complexity hybrid precoding strategies for millimeter wave communication systems. IEEE Trans Wirel Commun, 2014, 13: 1499–1513

    Article  Google Scholar 

  24. Yu X H, Shen J C, Zhang J, et al. Alternating minimization algorithms for hybrid precoding in millimeter wave MIMO systems. IEEE J Sel Top Signal Process, 2016, 10: 485–500

    Article  Google Scholar 

  25. Gao X Y, Dai L L, Han S F, et al. Energy-efficient hybrid analog and digital precoding for mmWave MIMO systems with large antenna arrays. IEEE J Sel Area Commun, 2016, 34: 998–1009

    Article  Google Scholar 

  26. Li J H, Xiao L M, Xu X B, et al. Energy-efficient Butler-matrix-based hybrid beamforming for multiuser mmWave MIMO system. Sci China Inf Sci, 2017, 60: 080304

    Article  Google Scholar 

  27. Alkhateeb A, Leus G, Heath R W. Limited feedback hybrid precoding for multi-user millimeter wave systems. IEEE Trans Wirel Commun, 2015, 14: 6481–6494

    Article  Google Scholar 

  28. Ni W H, Dong X D. Hybrid block diagonalization for massive multiuser MIMO systems. IEEE Trans Commun, 2016, 64: 201–211

    Article  Google Scholar 

  29. Zhang X Y, Molisch A F, Kung S Y. Variable-phase-shift-based RF-baseband codesign for MIMO antenna selection. IEEE Trans Signal Process, 2005, 53: 4091–4103

    Article  MathSciNet  MATH  Google Scholar 

  30. Sohrabi F, Yu W. Hybrid digital and analog beamforming design for large-scale antenna arrays. IEEE J Sel Top Signal Process, 2016, 10: 501–513

    Article  Google Scholar 

  31. Sohrabi F, Yu W. Hybrid analog and digital beamforming for mmWave OFDM large-scale antenna arrays. IEEE J Sel Area Commun, 2017, 35: 1432–1443

    Article  Google Scholar 

  32. Zhang J h, Tang P, Tian L, et al. 6–100 GHz research progress and challenges from a channel perspective for fifth generation (5G) and future wireless communication. Sci China Inf Sci, 2017, 60: 080301

    Article  Google Scholar 

  33. Adhikary A, Al Safadi E, Samimi M K, et al. Joint spatial division and multiplexing for mm-Wave channels. IEEE J Sel Area Commun, 2014, 32: 1239–1255

    Article  Google Scholar 

  34. Cheng X T, Luo Z Q. Compensation of transmitter I/Q imbalance in millimeter-Wave SC-FDE systems. IEEE Trans Veh Technol, 2017, 66: 4472–4476

    Article  Google Scholar 

  35. Chen X M, Fang C, Zou Y N, et al. Beamforming MIMO-OFDM systems in the presence of phase noises at millimeter- Wave frequencies. In: Proceedings of IEEE Wireless Communications and Networking Conference Workshops (WCNCW), San Francisco, 2017

    Google Scholar 

  36. Bazzi S, Xu W. Robust Bayesian precoding for mitigation of TDD hardware calibration errors. IEEE Signal Process Lett, 2016, 23: 929–933

    Article  Google Scholar 

  37. Xia P F, Heath R W, Gonzalez-Prelcic N. Robust analog precoding designs for millimeter wave MIMO transceivers with frequency and time division duplexing. IEEE Trans Commun, 2016, 64: 4622–4634

    Article  Google Scholar 

  38. Heath R W, Gonzalez-Prelcic N, Rangan S, et al. An overview of signal processing techniques for millimeter wave MIMO systems. IEEE J Sel Top Signal Process, 2016, 10: 436–453

    Article  Google Scholar 

  39. Hur S, Kim T, Love D J, et al. Millimeter wave beamforming for wireless backhaul and access in small cell networks. IEEE Trans Commun, 2013, 61: 4391–4403

    Article  Google Scholar 

  40. Alkhateeb A, El Ayach O, Leus G, et al. Channel estimation and hybrid precoding for millimeter wave cellular systems. IEEE J Sel Top Signal Process, 2014, 8: 831–846

    Article  Google Scholar 

  41. Xiao Z Y, Xia P F, Xia X G. Codebook design for millimeter-wave channel estimation with hybrid precoding structure. IEEE Trans Wirel Commun, 2017, 16: 141–153

    Article  Google Scholar 

  42. Kokshoorn M, Chen H, Wang P, et al. Millimeter wave MIMO channel estimation using overlapped beam patterns and rate adaptation. IEEE Trans Signal Process, 2017, 65: 601–616

    Article  MathSciNet  Google Scholar 

  43. Ghauch H, Kim T, Bengtsson M, et al. Subspace estimation and decomposition for large millimeter-wave MIMO systems. IEEE J Sel Top Signal Process, 2016, 10: 528–542

    Article  Google Scholar 

  44. Lee J, Gil G T, Lee Y H. Channel estimation via orthogonal matching pursuit for hybrid MIMO systems in millimeter wave communications. IEEE Trans Commun, 2016, 64: 2370–2386

    Article  Google Scholar 

  45. Swindlehurst A L, Ayanoglu E, Heydari P, et al. Millimeter-wave massive MIMO: the next wireless revolution? IEEE Commun Mag, 2014, 52: 56–62

    Article  Google Scholar 

  46. Alkhateeby A, Leusz G, Heath R W. Compressed sensing based multi-user millimeter wave systems: how many measurements are needed? In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brisbane, 2015. 2909–2913

    Google Scholar 

  47. Kokshoorn M, Chen H, Li Y H, et al. Beam-On-Graph: simultaneous channel estimation in multi-user millimeter wave MIMO systems. ArXiv Preprint, arXiv:1701.00365

  48. Rangan S. Generalized approximate message passing for estimation with random linear mixing. In: Proceedings of IEEE International Symposium on Information Theory Proceedings, St. Petersburg, 2011. 2168–2172

    Google Scholar 

  49. Gao Z, Hu C, Dai L L, et al. Channel estimation for millimeter-wave massive MIMO with hybrid precoding over frequency-selective fading channels. IEEE Commun Lett, 2016, 20: 1259–1262

    Article  Google Scholar 

  50. Zhou Z, Fang J, Yang L X, et al. Channel estimation for millimeter-wave multiuser MIMO systems via PARAFAC decomposition. IEEE Trans Wirel Commun, 2016, 15: 7501–7516

    Article  Google Scholar 

  51. Zhou Z, Fang J, Yang L X, et al. Low-rank tensor decomposition-aided channel estimation for millimeter wave MIMOOFDM systems. IEEE J Sel Area Commun, 2017, 35: 1524–1538

    Article  Google Scholar 

  52. Bogale T E, Le L B, Haghighat A, et al. On the number of RF chains and phase shifters, and scheduling design with hybrid analog-digital beamforming. IEEE Trans Wirel Commun, 2016, 15: 3311–3326

    Article  Google Scholar 

  53. Bogale T E, Le L B, Wang X B. Hybrid analog-digital channel estimation and beamforming: training-throughput tradeoff. IEEE Trans Commun, 2015, 63: 5235–5249

    Article  Google Scholar 

  54. Hur S, Baek S, Kim B, et al. Proposal on millimeter-wave channel modeling for 5G cellular system. IEEE J Sel Top Signal Process, 2016, 10: 454–469

    Article  Google Scholar 

  55. Zhao L, Ng D W K, Yuan J H. Multi-user precoding and channel estimation for hybrid millimeter wave systems. IEEE J Sel Area Commun, 2017, 35: 1576–1590

    Article  Google Scholar 

  56. Shafin R, Liu L J, Zhang J Z, et al. DoA estimation and capacity analysis for 3-D millimeter wave massive-MIMO/FDMIMO OFDM systems. IEEE Trans Wirel Commun, 2016, 15: 6963–6978

    Article  Google Scholar 

  57. Zhu G X, Huang K, Lau V K N, et al. Hybrid beamforming via the kronecker decomposition for the millimeter-Wave massive MIMO systems. ArXiv Preprint, arXiv:1704.03611

  58. Palacios J, De Donno D, Widmer J. Tracking mm-Wave channel dynamics: fast beam training strategies under mobility. ArXiv Preprint, arXiv:1612.07957

  59. Bae J, Lim S H, Yoo J H, et al. New beam tracking technique for millimeter wave-band communications. ArXiv Preprint, arXiv:1702.00276

  60. Guo Y C, Tang J L, Wu G, et al. Power allocation for massive MIMO: impact of power amplifier efficiency. Sci China Inf Sci, 2016, 59: 022301

    Google Scholar 

  61. Chen L H, Li L M, Cui T J. A. V 18 dBm 60 GHz power amplifier with 24 dB gain in 65 nm LP CMOS. In: Proceedings of Asia Pacific Microwave Conference, Kaohsiung, 2012. 13–15

    Google Scholar 

  62. Floyd B. A 16–18.8 GHz sub-integer-N frequency synthesizer for 60 GHz transceiver. IEEE J Solid-State Circ, 2012, 43: 1076–1086

    Article  Google Scholar 

  63. Li L M, Reynaert P, Steyaert M. Design and analysis of a 90 nm mm-Wave oscillator using inductive-division LC tank. IEEE J Solid-State Circ, 2009, 44: 1950–1958

    Article  Google Scholar 

  64. Niu X K, Li L M, Wang D M. A 50 GHz VCO in 65 nm LP CMOS for mm-Wave applications. In: Proceedings of the 13th IEEE International Conference on Solid-State and Integrated Circuit Technology, Hangzhou, 2016

    Google Scholar 

  65. Mirzaei A, Heidari M, Bagheri R, et al. The quadrature LC oscillators: a complete portrait on injection locking. IEEE J Solid-State Circ, 2007, 42: 1916–1932

    Article  Google Scholar 

  66. Miller R L. Fractional-frequency generators utilizing regenerative modulation. Proc IRE, 1939, 27: 446–457

    Article  Google Scholar 

  67. Niu X K, Li L M, Wang D M. A compact wide-locking range divide-by-4 static divider for mm-Wave applications. In: Proceedings of Global Symposium on Millimeter Waves (GSMM) & ESA Workshop on Millimetre-Wave Technology and Applications, Espoo, 2016

    Google Scholar 

  68. Chai Y, Li L M, Zhao D X, et al. A 20-to-75 dB gain 5 dB noise figure broadband 60 GHz receiver with digital calibration. In: Proceedings of IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Taipei, 2016

    Google Scholar 

  69. Chai Y, Niu X K, He L, et al. A 60-GHz CMOS broadband receiver with digital calibration, 20-to-75-dB gain, and 5-dB noise figure. IEEE Trans Microw Theory Tech, 2017, 65: 3989–4001

    Article  Google Scholar 

  70. Okada K, Li N, Matsushita K, et al. A 60 GHz 16QAM/8PSK/QPSK/BPSK direct-conversion transceiver for IEEE802.15.3c. IEEE J Solid-State Circ, 2011, 46: 2988–3004

    Article  Google Scholar 

  71. Saito N, Tsukizawa T, Shirakata N, et al. A fully integrated 60 GHz CMOS transceiver chipset based on WiGig/IEEE 802.11ad with built-in self calibration for mobile usage. IEEE J Solid-State Circ, 2013, 48: 3146–3159

    Article  Google Scholar 

  72. Li L M, Reynaert P, Steyaert M. A 60 GHz 15.7 mW static frequency divider in 90nm CMOS. In: Proceedings of ESSCIRC, Seville, 2010. 246–249

    Chapter  Google Scholar 

  73. He L, Li L M, Wang Z G. A low-power wideband dB-linear variable gain amplifier with DC offset cancellation for 60 GHz receiver. In: Proceedings of the 17th Annual Wireless and Microwave Technology Conference (WAMICON), Clearwater, 2016

    Google Scholar 

  74. Okada K, Kondou K, Miyahara M, et al. Full four-channel 6.3-Gb/s 60 GHz CMOS transceiver with low-power analog and digital baseband circuitry. IEEE J Solid-State Circ, 2013, 48: 46–65

    Article  Google Scholar 

  75. Mitomo T, Tsutsumi Y, Hoshino H, et al. A 2-Gb/s throughput CMOS transceiver chipset with in-package antenna for 60-GHz short-range wireless communication. IEEE J Solid-State Circ, 2012, 47: 3160–3171

    Article  Google Scholar 

  76. Wu H, Wang N Y, Du Y, et al. A blocker-tolerant current mode 60-GHz receiver with 7.5-GHz bandwidth and 3.8-dB minimum NF in 65-nm CMOS. IEEE Trans Microw Theory Tech, 2015, 63: 1053–1062

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National High-Tech Project (863) of China (Grant Nos. 2011AA010201, 2011AA010202), National Nature Science Foundation of China (Grant Nos. 61306030, 61674037), National Key R&D Program of China (Grant No. 2016YFC0800400), and Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lianming Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Wang, D., Niu, X. et al. mmWave communications for 5G: implementation challenges and advances. Sci. China Inf. Sci. 61, 021301 (2018). https://doi.org/10.1007/s11432-017-9262-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-017-9262-8

Keywords

Navigation