[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A novel user behavioral aggregation method based on synonym groups in online video systems

一种基于同义词组的在线视频系统用户行为汇聚的新方法

  • Letter
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

创新点

在线视频服务系统的激增蕴藏着巨大的商业利益。用户个人偏好,性别,年龄等信息对于个性化服务及广告推荐至关重要。针对在线视频系统中,用户行为数据的严重稀疏性及用户偏好的最大化保留问题,本文提出了一种新的基于同义词组的用户行为汇聚方法,并利用汇聚结果对用户进行了性别预测。与现有的方法相比,本文方法有效地降低了数据的稀疏性,极大地减少了用户偏好信息损失,并进一步提高了性别预测的准确性。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

References

  1. Weinsberg U, Bhagat S, Ioannidis S, et al. BlurMe: inferring and obfuscating user gender based on ratings. In: Proceedings of the 6th ACM Conference on Recommender Systems, New York, 2012. 195–202

    Google Scholar 

  2. Salamatian S, Zhang A, Calmon F D P, et al. How to hide the elephant-or the donkey-in the room: practical privacy against statistical inference for large data. In: Proceedings of IEEE Global Conference on Signal and Information Processing, Austin, 2013. 269–272

    Google Scholar 

  3. Kosinski M, Stillwell D, Graepel T. Private traits and attributes are predictable from digital records of human behavior. In: Proceedings of the National Academy of Sciences, Berkeley, 2013. 5802–5805

    Google Scholar 

  4. Bruckman A. Gender swapping on the Internet. High Noon on the Electronic Frontier: Conceptual Issues in Cyberspace, 1996. 317–326

    Google Scholar 

  5. Feng T, Guo Y, Chen Y, et al. Tags and titles of videos you watched tell your gender. In: Proceedings of the IEEE International Conference on Communications, Sydney, 2014. 1837–1842

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tingting Feng.

Additional information

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, T., Guo, Y. & Chen, Y. A novel user behavioral aggregation method based on synonym groups in online video systems. Sci. China Inf. Sci. 59, 1–3 (2016). https://doi.org/10.1007/s11432-015-5466-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-015-5466-8

Keywords

关键词

Navigation