[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A flexible capacitive tactile sensor array with micro structure for robotic application

基于微针结构的电容式机器人柔性触觉传感器

  • Research Paper
  • Special Focus on Robot Sensing and Dexterous Operation
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

A flexible capacitive tactile sensor array with micro needle structure is proposed in this paper for robotic application. Micro needle layer made of polydimethylsiloxane (PDMS) is sandwiched between the upper electrode layer made of PDMS and the bottom electrode layer fabricated on polyester (PET) film. The PDMS material renders the device adequate flexibility as it can be rolled into a cylinder. The single cell size in the fabricated 4 × 4 sensors array is 0.7 × 0.5 cm2 and the initial capacitance of each cell is 0.86 pF. The fabricated cell shows a sensitivity of 3.26%/mN within the full scale range of 1 kPa. The micro needle structure gives better repeatability and stability. The maximum error during each measurement is about 3.2%, while the minimum error is about 1.2%.

概要

创新点

面向机器人触觉恢复的广大市场需求, 本文提出了一种具有微针结构的柔性触觉传感器. 微针结构作为电介质层, 被夹在上下电极层之间, 形成平行板电容. 微针采用PDMS(聚二甲基硅氧烷)材料, 以保障器件的柔软性和可伸缩性. 微针结构的使用增加了器件的稳定性, 延长了器件的使用寿命. 在制成的4 × 4 检测阵列中, 单个检测单元大小为0.7 cm × 0.5 cm, 电容初值为0.86 pF. 经多次压按测试, 结果显示该阵列的测量范围为1 kPa, 检测精度为3.26 %/mN. 相同压力在多次检测中, 最大输出偏移为3.2%, 最小为1.2%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fritzsche M, Elkmann N, Schulenburg E. Tactile sensing: a key technology for safe physical human robot interaction. In: Proceedings of 6th ACM/IEEE International Conference on Human-Robot Interaction, Lausanne, 2011. 139–140

    Google Scholar 

  2. Khasnobish A, Singh G, Jati A, et al. Object-shape recognition and 3D reconstruction from tactile sensor images. Med Biol Eng Comput, 2014, 52: 353–362

    Article  Google Scholar 

  3. Haris M, Qu H. A CMOS-MEMS nano-newton force sensor for biomedical applications. In: Proceedings of 5th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, Xiamen, 2010. 177–181

    Google Scholar 

  4. Hwang E, Seo J, Kim Y. A polymer-based flexible tactile sensor for normal and shear load detection. In: Proceedings of 19th IEEE International Conference on Micro Electro Mechanical Systems, Istanbul, 2006. 714–717

    Chapter  Google Scholar 

  5. Yang Y J, Cheng M Y, Chang W Y, et al. An integrated flexible temperature and tactile sensing array using PI-copper films. Sensor Actuator A-Phys, 2008, 143: 143–153

    Article  Google Scholar 

  6. Cheng M Y, Lin C L, Yang Y J. Tactile and shear stress sensing array using capacitive mechanisms with floating electrodes. In: Proceedings of IEEE 23rd International Conference on Micro Electro Mechanical Systems, Hong Kong, 2010. 228–231

    Google Scholar 

  7. Hoshi T, Shinoda H. Robot skin based on touch-area-sensitive tactile element. In: Proceedings of the 2006 IEEE International Conference on Robotics and Automation, Florida, 2006. 3463–3468

    Google Scholar 

  8. Xu Z, Ming L, Bo W, et al. A wide measurement range and fast update rate integrated interface for capacitive sensors array. IEEE Trans Circuit Syst I-Regul Papers, 2014, 61: 2–11

    Article  Google Scholar 

  9. Wei Y, Torah R, Yang K, et al. Screen printing of a capacitive cantilever-based motion sensor on fabric using a novel sacrificial layer process for smart fabric applications. Meas Sci Technol, 2013, 24: 75104

    Article  Google Scholar 

  10. Lei K F, Lee K, Lee M. Development of a flexible PDMS capacitive pressure sensor for plantar pressure measuremen. Microelectron Eng, 2012, 99: 1–5

    Article  Google Scholar 

  11. Pritchard E, Mahfouz M, Evans Iii B, et al. Flexible capacitive sensors for high resolution pressure measurement. In: Proceedings of IEEE Sensors, Lecce, 2008. 1484–1487

    Google Scholar 

  12. Lotters J C, Olthuis W, Veltink P H, et al. The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications. J Micromech Microeng, 1997, 7: 145–147

    Article  Google Scholar 

  13. Hotta Y, Zhang Y, Miki N. Flexible distributed capacitive sensor with encapsulated ferroelectric liquid. In: Proceedings of IEEE 24th International Conference on Micro Electro Mechanical Systems, Cancun, 2011. 573–576

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xu Zhang or Chun Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, X., Zhang, X., Liu, M. et al. A flexible capacitive tactile sensor array with micro structure for robotic application. Sci. China Inf. Sci. 57, 1–6 (2014). https://doi.org/10.1007/s11432-014-5191-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-014-5191-8

Keywords

关键词

Navigation