[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Coherence-enhancing line drawing for color images

  • Research Paper
  • Progress of Projects Supported by NSFC
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

Line drawing plays an important role in many image-based non-photorealistic applications. However, most existing approaches use a grayscale edge detector for line extraction, so that only luminance differences between nearby image pixels is taken into account, but the chrominance differences is ignored. This leads to the undesirable consequence that visually significant edges in adjacent regions with different colors of similar luminance cannot be detected. To address this limitation, we present a novel enhanced line drawing method based on a flow-based difference-of-Gaussians (FDoG) filter. Because of an inherent property of the thresholded DoG edge model, captured lines may appear dislodged from the true edges in the image. To this end, we provide a gradient-guided warping technique so that smooth and coherent lines can be extracted in the correct location. The GPU implementation of the proposed algorithms allows real-time performance, and experimental examples with various color images demonstrate the method’s superior qualitative performance over previous approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Son M, Kang H, Lee Y, et al. Abstract line drawings from 2D Images. In: Marc A, Steven J G, Tao J, eds. Proceedings of the Pacific Conference on Computer Graphics and Applications. Maui, 2007. 333–342

  2. Pellegrino F A, Vanzella W, Torre V. Edge detection revisited. IEEE Trans Syst Man Cybern B Cybern, 2004, 34: 1500–1518

    Article  Google Scholar 

  3. Kang H, Lee S, Chui C K. Coherent line drawing. In: Gooch B, Agrawala M, Deussen O, eds. Proceedings of the 5th International Symposium on Non-photorealistic Animation and Rendering (NPAR’ 07), San Diego, 2007. 43–50

  4. Canny J. A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell, 1986, 8: 679–698

    Article  Google Scholar 

  5. Meer P, Georgescu B. Edge detection with embedded confidence. IEEE Trans Pattern Anal Mach Intell, 2001, 23: 1351–1365

    Article  Google Scholar 

  6. DeCarlo D, Santella A. Stylization and abstraction of photographs. ACM Trans Graph, 2002, 21: 769–776

    Article  Google Scholar 

  7. Fischer J, Bartz D, Strafer W. Stylized augmented reality for improved immersion. In: Bernd F, Simon J, Haruo T, eds. Proceedings of IEEE Virtual Reality (VR’ 05), Bonn, 2005. 195–202

  8. Kang H W, Chui C K, Chakraborty U. A unified scheme for adaptive stroke-based rendering. Vis Comput, 2006, 22: 814–824

    Article  Google Scholar 

  9. Orzan A, Bousseau A, Barla P, et al. Structure-preserving manipulation of photographs. In: Gooch B, Agrawala M, Deussen O, eds. Proceedings of the 5th International Symposium on Non-photorealistic Animation and Rendering (NPAR’ 07), San Diego, 2007. 103–110

  10. Gooch B, Reinhard E, Gooch A. Human facial illustrations: Creation and psychophysical evaluation. ACM Trans Graph, 2004, 23: 27–44

    Article  Google Scholar 

  11. Marr D, Hildreth E. Theory of edge detection. Proc Royal Society B: Biol Sci, 1980, 207: 187–217

    Article  Google Scholar 

  12. Winnemöller H, Olsen S C, Gooch B. Real-time video abstraction. ACM Trans Graph, 2006, 25: 1221–1226

    Article  Google Scholar 

  13. Cabral B, Leedom L C. Imaging vector fields using line integral convolution. In: Whitton M C, ed. Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH’ 93), Anaheim, 1993. 263–270

  14. Kyprianidis J E, Döllner J. Image abstraction by structure adaptive filtering. In: Lim I S, Tang W, eds. Proc. EG UK Theory and Practice of Computer Graphics, Manchester, 2008. 51–58

  15. Kang H, Lee S, Chui C K. Flow-based image abstraction. IEEE Trans Vis Comput Graph, 2009, 15: 62–76

    Article  Google Scholar 

  16. Gooch A A, Olsen S C, Tumblin J, et al. Color2gray: salience-preserving color removal. ACM Trans Graph, 2005, 24: 634–639

    Article  Google Scholar 

  17. Neumann L, Čadík M, Nemcsics A. An efficient perception-based adaptive color to gray transformation. In: Fellner D, ed. Proceedings of Computational Aesthetics, Banff, 2007. 73–80

  18. Kim Y, Jang C, Demouth J, et al. Robust color-to-gray via nonlinear global mapping. ACM Trans Graph, 2009, 28: 1–4

    Google Scholar 

  19. Smith K, Landes P E, Thollot J K, et al. Apparent greyscale: A simple and fast conversion to perceptually accurate images and video. Comput Graph Forum, 2008, 27: 193–200

    Article  Google Scholar 

  20. Grundland M, Dodgson N A. Decolorize: Fast, contrast enhancing, color to grayscale conversion. Pattern Recognit, 2007, 40: 2891–2896

    Article  Google Scholar 

  21. Čadík M. Perceptual evaluation of color-to-grayscale image conversions. Comput Graph Forum, 2008, 27: 1745–1754

    Article  Google Scholar 

  22. Salinas R A, Richardson C, Abidi M A, et al. Data fusion: color edge detection and surface reconstruction through regularization. IEEE Trans Ind Electron, 1996, 43: 355–363

    Article  Google Scholar 

  23. Zenzo S D. A note on the gradient of a multi-image. Comput Vis Graph Image Process, 1986, 33: 116–125

    Article  MATH  Google Scholar 

  24. Trahanias P, Venetsanopoulos A. Vector order statistics operators as color edge detectors. IEEE Trans Syst Man Cybern B Cybern, 1996, 26: 135–143

    Article  Google Scholar 

  25. Ruzon M A. Early vision using distributions. Dissertation for the Doctoral Degree. Stanford: Stanford University, 2000

    Google Scholar 

  26. Ruzon M A, Tomasi C. Color edge detection with the compass operator. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Ft. Collins, 1999. 160–166

  27. Tomasi C, Manduchi R. Bilateral filtering for gray and color images. In: Ahuja N, Desai U B, eds. Proceedings of the 6th International Conference on Computer Vision (ICCV’ 98), Bombay, 1998. 839–846

  28. Kyprianidis J E, Kang H, Döllner J. Image and video abstraction by anisotropic kuwahara filtering. Comput Graph Forum, 2009, 28: 1955–1963

    Article  Google Scholar 

  29. Kyprianidis J E, Kang H. Image and video abstraction by coherence-enhancing filtering. Comput Graph Forum, 2011, 30: 593–602

    Article  Google Scholar 

  30. Yang G Z, Burger P, Firmin D, et al. Structure adaptive anisotropic image filtering. Image Vis Comput J, 1996, 14: 135–145

    Article  Google Scholar 

  31. Arad N, Gotsman C. Enhancement by image-dependent warping. IEEE Trans Image Process, 1999, 8: 1063–1074

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ShanDong Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, S., Ma, Z., Liu, X. et al. Coherence-enhancing line drawing for color images. Sci. China Inf. Sci. 56, 1–11 (2013). https://doi.org/10.1007/s11432-012-4685-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-012-4685-5

Keywords

Navigation