[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

MEMS gyroscope control system using a band-pass continuous-time sigma-delta modulator

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

This paper presents a MEMS gyroscope control system of using a high-order band-pass continuous-time sigma-delta modulator. Compared with a low-pass discrete-time sigma-delta modulator based solution, the band-pass modulator can considerably decrease the sampling frequency; moreover, the continuous-time architecture has an obvious advantage on PCB prototyping and shorter lead time of the implementation in hardware. System level simulations using MATLAB/Simulink show the proposed sixth order sigma-delta modulator can achieve a high SNR of 100 dB for an angular rate input with an amplitude of 200°/s and a frequency of 32 Hz. A PCB circuit implementation is simulated using Orcad/PSpice to analyze the stability, and implemented in hardware. Measurement of the power spectral density of the output bitstream reveals a noise floor of −90 dBV/Hz1/2. The prototype is tested on a rate table with an angular rate input, verifying that the principle of the approach of using an electro-mechanical band-pass sigma-delta modulator control system for a MEMS gyroscope.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Henrion W, DiSanza L, Terry M I S, et al. Wide dynamic range direct digital accelerometer. In: Proceedings of IEEE Solid-State Sensor and Actuator Workshop. Hilton: IEEE, 1990. 153–157

    Chapter  Google Scholar 

  2. Yun W J, Howe R T, Gray P R. Surface micromachined digitally force-balanced accelerometer with integrated CMOS detection circuitry. In: Proceedings of IEEE Solid-State Sensor and Actuator Workshop. Hilton: IEEE, 1992. 126–131

    Google Scholar 

  3. Smith T, Nys O, Chevroulet M, et al. A 15 b electromechanical sigma-delta converter for acceleration measurements. In: IEEE International Solid-State Circuits Conference. San Francisco: IEEE, 1994. 160–161

    Chapter  Google Scholar 

  4. Kraft M, Lewis C P, Hesketh T G. Closed loop silicon accelerometers. IEEE P-Circ Dev Syst, 1998, 145: 325–331

    Article  Google Scholar 

  5. Lemkin M A, Boser B E. Three-axis micromachined accelerometer with a CMOS position-sense interface and digital offset-trim electronics. IEEE J Solid-St Circ, 1999, 34: 456–468

    Article  Google Scholar 

  6. Jiang X S, Seeger J I, Kraft M, et al. A monolithic surface micromachined z-axis gyroscope with digital output. In: Symposium on VLSI Circuits. Hawaii: IEEE, 2000. 16–19

    Google Scholar 

  7. Norsworthy S R, Schreier R, Temes C. Delta-Sigma Data Converters-Theory, Design, and Simulation. NJ: IEEE Press, 1997

    Google Scholar 

  8. Petkov V P, Boser B E. A fourth-order interface for micromachined inertial sensors. IEEE J Solid-St Circ, 2005, 40: 1602–1609

    Article  Google Scholar 

  9. Rodjegard H, Sandstrom D, Pelin P, et al. A digitally controlled MEMS gyroscope with 3.2deg/Hr stability. In: Transducers’05. Seoul: IEEE, 2005. 535–538

    Google Scholar 

  10. Raman J, Cretu E, Rombouts P, et al. A digitally controlled MEMS gyroscope with unconstrained sigma-delta force-feedback architecture. In: IEEE MEMS’06. Istanbul: IEEE, 2006. 710–713

    Google Scholar 

  11. Raman J, Cretu E, Rombouts P, et al. A closed-loop digitally controlled MEMS gyroscope with unconstrained sigmadelta force-feedback. IEEE Sensor J, 2009, 9: 297–305

    Article  Google Scholar 

  12. Dong Y F, Kraft M, Redman-White W. Micromachined vibratory gyroscopes controlled by a high-order bandpass sigma-delta modulator. IEEE Sensor J, 2007, 7: 59–69

    Article  Google Scholar 

  13. Dong Y F, Kraft M, Hedenstierna N, et al. Microgyroscope control system using a high-order band-pass continuoustime sigma-delta modulator. Sensor Actuat A-Phys, 2008, 145: 299–305

    Article  Google Scholar 

  14. Ding H T, Liu X S, Cui J, et al. A bulk micromachined z-axis single crystal silicon gyroscope for commercial applications. In: IEEE NEMS’08. Sanya: IEEE, 2008. 1039–1042

    Google Scholar 

  15. Ding H T, Cui J, Liu X S, et al. A highly double-decoupled self-oscillation gyroscope operationg at atmospheric pressure. In: IEEE Sensor’08. Lecce: IEEE, 2008. 674–677

    Google Scholar 

  16. Shoaei O, Snelgrove W M. A multi-feedback design for LC bandpass delta-sigma modulators. In: Proceedings of International Symposium on Circuits System. Washington: IEEE, 1995. 171–174

    Chapter  Google Scholar 

  17. Cherry J A, Snelgrove W M. Excess loop delay in continuous-time delta-sigma modulators. IEEE Trans Circuits-II 1999, 46: 376–389

    Google Scholar 

  18. Malcovati P. SD Toolbox 2 MATLAB File Exchange. 2005. Online available at: http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=7589&objectType=file

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhenChuan Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, H., Yang, Z., Wang, Z. et al. MEMS gyroscope control system using a band-pass continuous-time sigma-delta modulator. Sci. China Inf. Sci. 56, 1–10 (2013). https://doi.org/10.1007/s11432-012-4670-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-012-4670-z

Keywords

Navigation