[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Abstract

The adjoint code generator (ADG) is developed to produce the adjoint codes, which are used to analytically calculate gradients and the Hessian-vector products with the costs independent of the number of the independent variables. Different from other automatic differentiation tools, the implementation of ADG has advantages of using the least program behavior decomposition method and several static dependence analysis techniques. In this paper we first address the concerned concepts and fundamentals, and then introduce the functionality and the features of ADG. In particular, we also discuss the design architecture of ADG and implementation details including the recomputation and storing strategy and several techniques for code optimization. Some experimental results in several applications are presented at the end.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yamamoto T. On the method of tangent hyperbolas in Banach spaces. J Comput Appl Math, 1998, 21: 75–86

    Article  Google Scholar 

  2. Deng N Y, Zhang H B. Theoretical efficiency of a new inexact method of tangent hyperbolas. Optim Methods Softw, 2004, 19(3–4): 247–265

    Article  MathSciNet  MATH  Google Scholar 

  3. Knoll D A, Keys D E. Jacobian-free Newton-Krylov methods: A survey of approaches and applications. J Comput Phys, 2004, 193(2): 357–397

    Article  MathSciNet  MATH  Google Scholar 

  4. Wolfram S. The Mathematica Book. 3rd ed. Cambridge: Cambridge University Press and Wolfram Media, Inc., 1996

    MATH  Google Scholar 

  5. Waterloo Maple Software, Inc. Maple V software package, 1994

  6. Macsyma Users’ Guide, 1996

  7. Griewank A. On Automatic Differentiation, Mathematical Programming: Recent Developments and Applications (Amsterdam). Iri M, Tanabe K, eds. Dordrecht: Kluwer Academic Publishers, 1989. 83–108

    Google Scholar 

  8. Griewank A. Evaluating Derivatives: Principles and Techniques of Automatic Differentiation. Philadelphia: SIAM, 2000

    MATH  Google Scholar 

  9. Wang B, Zou X L, Zhu J, et al. Data assimilation and its applications. Proc Natl Acad Sci USA, 2000, 97: 11143–11144

    Article  Google Scholar 

  10. Zou X L, Wang B, Liu H, et al. Use of GPS/MET refraction angles in three-dimensional variational analysis. Quart J Roy Meteor Soc, 2000, 126: 3013–3040

    Article  Google Scholar 

  11. Le Dimet F X, Talagrand O. Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects. Tellus, 1986, 38(A): 97–110

    Google Scholar 

  12. Zhang X, Wang B. Parallel computing of a variational data assimilation model for GPS/MET observation using the raytracing method. Adv Atmos Sci, 2004, 21: 220–226

    Article  Google Scholar 

  13. Berresa S, Bulvedab R, Coronel A, et al. Numerical identification of parameters for a flocculated suspension from concentration measurements during batch centrifugation. Chem Eng J, 2005, 111: 91–103

    Article  Google Scholar 

  14. Bischof C, Pusch G, Knoesel R. Sensitivity analysis of the MM5 weather model using automatic differentiation. Comput Phys, 1996, 10: 605–612

    Article  Google Scholar 

  15. Cacui D G. Sensitivity theory for nonlinear systems, II: Extension to additional classes of responses. J Math Phys, 1981, 22(12): 2803–2812

    Article  MathSciNet  Google Scholar 

  16. Mu M. Nonlinear singular vectors and nonlinear singular values. Sci China Ser D-Earth Sci, 2000, 43: 375–385

    Article  Google Scholar 

  17. Griewank A. An implementation of checkpointing for the reverse or adjoint model of differentiation. ACM Trans Math Softw, 1999, 26(1): 1–19

    Google Scholar 

  18. Bischof C, Haghighat M R. On hierarchical differentiation. In: Berz M, Bischof C, Corliss G, et al., eds. Computational Differentiation: Techniques, Applications, and Tools. Philadelphia, PA: SIAM, 1996. 83–94

    Google Scholar 

  19. Volin YM, Ostrovskill G M. Automatic computation of derivatives with the use of the multi-class differentiation techniques. Comput Math Appl, 1985, 11: 1099–1114

    Article  MathSciNet  MATH  Google Scholar 

  20. Griewank A. Achieve logarithmic growth of temporal and spatial complexity in reverse automatic differentiation. Optim Methods Softw, 1992, 1: 35–54

    Article  Google Scholar 

  21. Bischof C, Buker H M, Hovland P, et al. Advances in Automatic Differentiation, Lecture Notes in Computational Science and Engineering. Berlin: Springer, 2008. 64

    Google Scholar 

  22. Cheng Q, Zhang L B, Wang B. Model adjointization and its costs. Sci China Ser F-Inf Sci, 2004, 47(5): 587–611

    Article  Google Scholar 

  23. Cheng Q, Zhang H B, Zhao Y H. Differentiation transforming system. Nat Sci Prog, 2009, 19(3): 397–406

    Article  Google Scholar 

  24. Levine J, Mason T. Lex and Yacc. 2nd ed. Sebastopol, CA: O Reilly and Associate Inc., 1992

    Google Scholar 

  25. Giering R, Kaminski T. Recipes for adjoint code construction. ACM Trans Math Softw, 1998, 24(4): 437–474

    Article  MATH  Google Scholar 

  26. Rostating N, Dalmas S, Galligo A. Automatic differentiation in Odyssee. Tellus, 1993, 45(A): 558–568

    Google Scholar 

  27. Griewank A, Juedes D, Utke J. Algorithm 755: ADOL-C, a package for the automatic differentiation of algorithms written in C/C++. ACM Trans Math Softw, 1996, 22(2): 131–167

    Article  MATH  Google Scholar 

  28. Bischof C, Carle A, Corliss G, et al. ADIFOR: Generating derivative codes for Fortran programs. Scientific Program, 1992, 1(1): 11–29

    Google Scholar 

  29. Griewank A. Some bounds on the complexity of gradients, Jacobians, and Hessians. In: Pardalos P M, ed. Complexity in Nonlinear Optimization. River Edge, NJ: World Scientific Publishers, 1993. 128–161

    Google Scholar 

  30. Newsam G N, Ramsdell J D. Estimation of sparse Jacobian matrices. SIAM J Algebr Discrete Method, 1983, 4: 404–417

    Article  MathSciNet  MATH  Google Scholar 

  31. Balay S, Buschelman K, Eijkhout V, et al. PETSc 2.0 users manual. Technical Report ANL-95/11-Revision 2.1.3, Argonne National Laboratory, May 2003

  32. Zou X L, Vandenberghe F, Wang B, et al. A Raytracing operator and its adjoint for the use of GPS/MET refraction angle measurements. J Geophys Res Atmos, 1999, 104(D18): 22301–22318

    Article  Google Scholar 

  33. Wang B, Ji Z Z. Construction and numerical tests for the multi-conservation difference scheme. Chin Sci Bull, 2003, 48(10): 1016–1020

    Article  MathSciNet  Google Scholar 

  34. Wu W, Song L C, Mo Y R, et al. Xiamen-An ab initio Spin-Free Valence Bond (VB) Program. Xiamen: Xiamen University Press, 1998

    Google Scholar 

  35. Song L C, Luo Y, Dong K M, et al. Paired-permanent approach for VB theory (II). Sci China Ser B-Mech, 2001, 44(6): 561–570

    Article  Google Scholar 

  36. Roberta G, Dean A M, Green W H, et al. Hydrogen abstraction rates via density functional theory. Chem Phys Lett, 1999, 312(2–4): 262–268

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Cheng.

Additional information

Supported by the National Natural Science Foundation of China (Grant Nos. 60503031, 10871014), and the National Basic Research Program of China (Grant No. 2004CB418304)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, Q., Cao, J., Wang, B. et al. Adjoint code generator. Sci. China Ser. F-Inf. Sci. 52, 926–941 (2009). https://doi.org/10.1007/s11432-009-0098-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11432-009-0098-5

Keywords

Navigation